Advancing Sustainable Material Selection in Construction: A Systematic Review of Multi-Criteria Decision-Making Applications

Authors

  • Chao Abdulrahman Yaghmour Department of Industrial Engineering, American University of Sharjah, Sharjah, UAE
  • Ahmed Yousry Department of Industrial Engineering, American University of Sharjah, Sharjah, UAE
  • Hussein Kaya Department of Industrial Engineering, American University of Sharjah, Sharjah, UAE
  • Ibrahim Alowais Department of Industrial Engineering, American University of Sharjah, Sharjah, UAE
  • Zied Bahroun1* Karam Al-Assaf Department of Industrial Engineering, American University of Sharjah, Sharjah, UAE

DOI:

https://doi.org/10.31181/dmame8220251583

Keywords:

MCDM; Sustainable; Green; Construction; Material Selection; AHP; TOPSIS; Fuzzy

Abstract

Choosing sustainable materials for construction projects is essential to achieving global sustainability goals, as environmental challenges and economic and social issues continue to escalate. The research applies PRISMA methodology to identify and select of MCDM applications in sustainable material selection studies through a systematic review. The research analyzed 120 peer-reviewed papers to identify four main categories which included Site Selection, Infrastructure Planning, Sustainability Assessment, Performance Indicators and Supplier and Material Selection Decision Support Systems, Sustainable Materials and Construction Methods. The research shows that hybrid MCDM methods like AHP-WASPAS, MLCAQ and fuzzy TOPSIS are being used increasingly due to their stronger performance and ability to handle complex evaluation scenarios. Bibliometric analysis of co-authorship shows that there is close collaboration among researchers. New research directions are moving toward combining Internet of Things technologies with Artificial Intelligence systems. Future research agendas for sustainable construction should focus on the development of coherent sustainability assessment frameworks using practical tools that help professionals deliver sustainable construction projects with positive environmental effects.

Downloads

Download data is not yet available.

References

[1] Ahmed, M., Qureshi, M. N., Mallick, J., & Ben Kahla, N. (2019). Selection of Sustainable Supplementary Concrete Materials. Adv. Mater. Sci. Eng. https://doi.org/10.1155/2019/2850480

[2] Al-Atesh, E., Rahmawati, Y., Zawawi, N. A. W. A., & Elmansoury, A. (2021). Developing the Green Building Materials Selection Criteria. Int. J. Adv. Sci. Eng. Inf. Technol. https://doi.org/10.18517/IJASEIT.11.5.14364

[3] Alam Bhuiyan, M. M., & Hammad, A. (2023). A Hybrid Multi-Criteria Decision Support System for Selecting the Most Sustainable Structural Material for a Multistory Building Construction. Sustainability, 15, 3128. https://doi.org/10.3390/su15043128

[4] Antwi-Afari, P., Ng, S. T., & Chen, J. (2023). Determining the optimal partition system of a modular building from a circular economy perspective: A multicriteria decision-making process. Renewable and Sustainable Energy Reviews, 185. https://doi.org/10.1016/j.rser.2023.113601

[5] Arukala, S. R., Pancharathi, R. K., & Pulukuri, A. R. (2019). Evaluation of Sustainable Performance Indicators for the Built Environment Using AHP Approach. J. Inst. Eng. Ser. A. https://doi.org/10.1007/s40030-019-00405-8

[6] Bakhoum, E. S., & Brown, D. C. (2013). A hybrid approach using AHP-TOPSIS-entropy methods for sustainable ranking of structural materials. International Journal of Sustainable Engineering, 6, 212-224. https://doi.org/10.1080/19397038.2012.719553

[7] Banihashemi, S., Solaimani, K., & Yousefi Kebria, D. (2023). Desalination plant feasibility and site selection on the southern Caspian Sea coasts using SAW and TOPSIS multi-criteria analysis. International Journal of Environmental Science and Technology, 20(9), 9521-9536. https://doi.org/10.1007/s13762-023-05044-y

[8] Başar, S., Kucuk Yilmaz, A., Karaca, M., Lapçın, H. T., & Başar, S. İ. (2020). Fleet modelling in strategic multi-criteria decision-making of approved training organization from capacity building and resource dependency theory perspective. Aircraft Engineering and Aerospace Technology, 92, 917-923. https://doi.org/10.1108/AEAT-03-2020-0051

[9] Burnham, J. F. (2006). Scopus database: a review. Biomedical Digital Libraries, 3, 1. https://doi.org/10.1186/1742-5581-3-1

[10] Carvalho, J. P. A., Villaschi, F. S., & Bragança, L. (2021). Assessing life cycle environmental and economic impacts of building construction solutions with BIM. Sustainability, 13, 1-21. https://doi.org/10.3390/su13168914

[11] Chen, C. (2020). A Novel Multi-Criteria Decision-Making Model for Building Material Supplier Selection Based on Entropy-AHP Weighted TOPSIS. Entropy, 22, 259. https://doi.org/10.3390/e22020259

[12] Chen, Z., Hammad, A. W. A., Waller, S. T., & Haddad, A. N. (2023). Modelling supplier selection and material purchasing for the construction supply chain in a fuzzy scenario-based environment. Automation in Construction, 150, 104847. https://doi.org/10.1016/j.autcon.2023.104847

[13] Chen, Z., Martínez, L., Chang, J., Wang, X., Xionge, S., & Chin, K. (2019). Sustainable building material selection. Eng Appl Artif Intell. https://doi.org/10.1016/j.engappai.2019.08.006

[14] Dachowski, R., Kamionka, L. W., & Gałek, K. (2019). Unconventional buildings materials. Sci. Rev. Eng. Environ. Sci. https://doi.org/10.22630/PNIKS.2019.28.2.25

[15] Das, J. T., Banerjee, A., Puppala, A. J., & Chakraborty, S. (2019). Sustainability and resilience in pavement infrastructure: a unified assessment framework. Environmental Geotechnics, 9, 360. https://doi.org/10.1680/jenge.19.00035

[16] Gulsun, B., & Mic, P. (2020). An integrated fuzzy multi criteria decision making method for sustainable (green) packaging materials selection. Fresenius Environmental Bulletin, 29, 2653. https://www.proquest.com/docview/2392471630

[17] Hossain, M. U., Liu, J., Xuan, D., Ng, S. T., Ye, H., & Abdulla, S. J. (2022). Designing sustainable concrete mixes. J. Build. Eng. https://doi.org/10.1016/j.jobe.2021.103587

[18] Hosseini Sabzevari, S. A., Mottaki, Z., Hassani, A., Zandiyeh, S., & Aslani, F. (2023). Temporary housing site selection in Soffeh Mountain, District 5 of Isfahan, Iran. International Journal of Disaster Resilience in the Built Environment, 14, 611-627. https://doi.org/10.1108/IJDRBE-12-2021-0162

[19] Ijadi Maghsoodi, A., Soudian, S., Martínez, L., Herrera-Viedma, E., & Zavadskas, E. K. (2020). A phase change material selection using the interval-valued target-based BWM-CoCoMULTIMOORA approach. Applied Soft Computing, 95, 106508. https://doi.org/10.1016/j.asoc.2020.106508

[20] Inan, A., & Kara, H. (2022). Urban Railway System Route Selection in Turkey Based on Socio-Economic and Technical Criteria Using the Analytical Hierarchy Process. Transportation Research Record, 2676, 633-644. https://doi.org/10.1177/03611981221090513

[21] Jiao, H. (2020). Selection of Resettlement Site in Reservoir Construction Using Pythagorean Fuzzy MULTIMOORA. Journal of Coastal Research, 115, 502-505. https://doi.org/10.2112/JCR-SI115-138.1

[22] Kannan, D., Moazzeni, S., Darmian, S. M., & Afrasiabi, A. (2021). A hybrid approach based on MCDM methods and Monte Carlo simulation for sustainable evaluation of potential solar sites in east of Iran. Journal of Cleaner Production, 279. https://doi.org/10.1016/j.jclepro.2020.122368

[23] Kirby, A. (2023). Exploratory Bibliometrics: Using VOSviewer. Publications. https://doi.org/10.3390/publications11010010

[24] Koc, K., Ekmekcioglu, Ö., & Işlk, Z. (2023). Developing a Hybrid Fuzzy Decision-Making Model. J. Constr. Eng. Manage. https://doi.org/10.1061/JCEMD4.COENG-13305

[25] Liao, H., Ren, R., Antucheviciene, J., Šaparauskas, J., & Al-Barakati, A. (2020). Sustainable construction supplier selection. Ekon. Manage. https://doi.org/10.15240/tul/001/2020-4-008

[26] Lu, K., Jiang, X., Yu, J., Tam, V. W. Y., & Skitmore, M. (2021). Integration of life cycle assessment and life cycle cost using building information modeling: A critical review. Journal of Cleaner Production, 285, 125438. https://doi.org/10.1016/j.jclepro.2020.125438

[27] Marović, I., Perić, M., & Hanak, T. (2021). A multi‐criteria decision support concept for selecting the optimal contractor. Appl. Sci. https://doi.org/10.3390/app11041660

[28] Mathiyazhagan, K., Gnanavelbabu, A., & Lokesh Prabhuraj, B. (2019). A sustainable assessment model. J. Adv. Manag. Res. https://doi.org/10.1108/JAMR-09-2018-0085

[29] Matić, B., Jovanović, S., Das, D. K., Zavadskas, E. K., Stević, Z., Sremac, S., & Marinković, M. (2019). A new hybrid MCDM model: Sustainable supplier selection in a construction company. Symmetry. https://doi.org/10.3390/sym11030353

[30] Milošević, M. R., Milošević, D. M., Stević, D. M., & Kovačević, M. (2023). Interval Valued Pythagorean Fuzzy AHP Integrated Model in a Smartness Assessment Framework of Buildings. Axioms. https://doi.org/10.3390/axioms12030286

[31] Moshood, T. D., Rotimi, J. O., & Shahzad, W. (2024). Enhancing sustainability considerations in construction industry projects. Environment, Development and Sustainability. https://doi.org/10.1007/s10668-024-04946-2

[32] Murugesan, P., Partheeban, P., Manimuthu, S., Jegadeesan, V., & Christopher, C. G. (2023). Multi-criteria decision analysis for optimum selection of different construction bricks. Journal of Building Engineering, 71. https://doi.org/10.1016/j.jobe.2023.106440

[33] Nikkhou, S., Mahmoudisari, M. H., & Barmayehvar, B. (2020). A sustainable multi-criteria decision-making framework to select interior walls. Proceedings of the ICE Engineering Sustainability, 174, 189. https://doi.org/10.1680/jensu.20.00031

[34] Nofal, A., & Hammad, A. (2020). Application of Fuzzy TOPSIS for Selecting Most Sustainable Building Wall Material. https://doi.org/10.14455/ISEC.res.2020.7(1).CON-15

[35] Noorollahi, Y., Ghenaatpisheh Senani, A., Fadaei, A., Simaee, M., & Moltames, R. (2022). A framework for GIS-based site selection and technical potential evaluation of PV solar farm using Fuzzy-Boolean logic and AHP. Renewable Energy, 186, 89-104. https://doi.org/10.1016/j.renene.2021.12.124

[36] Rao, C., He, Y., & Xiao, X. (2023). Selection decision-making mechanism of “zero-waste city” in the Yangtze River economic zone. Environment, Development and Sustainability, 25, 11421-11454. https://doi.org/10.1007/s10668-022-02534-w

[37] Rashid, K., Rehman, M. U., de Brito, J., & Ghafoor, H. (2020). Multi-criteria optimization of recycled aggregate concrete mixes. J. Clean. Prod. https://doi.org/10.1016/j.jclepro.2020.124316

[38] Reddy, A. S., Kumar, P. R., & Raj, P. A. (2022). Entropy-based fuzzy TOPSIS framework for selection of a sustainable building material. International Journal of Construction Management, 22, 1194-1205. https://doi.org/10.1080/15623599.2019.1683695

[39] Sadeghiravesh, M. H., Khosravi, H., & Abolhasani, A. (2023). Selecting proper sites for underground dam construction using Multi-Attribute Utility Theory in arid and semi-arid regions. Journal of Mountain Science, 20, 197-208. https://doi.org/10.1007/s11629-021-7262-9

[40] Sandanayake, M., Gunasekara, C., Law, D., Zhang, G., Setunge, S., & Wanijuru, D. (2020). Sustainable criterion selection framework. Sustain. Mater. Technol. https://doi.org/10.1016/j.susmat.2020.e00178

[41] Serrano-Baena, M., Ruiz-Díaz, C., Boronat, P. G., & Mercader-Moyano, P. (2023). Optimising LCA in complex buildings. Energy Build. https://doi.org/10.1016/j.enbuild.2023.113219

[42] Soni, A., Das, P. K., & Kumar, S. (2023). Selection of waste plastics for incorporation. Clean Technol. Environ. Policy. https://doi.org/10.1007/s10098-023-02539-7

[43] Štilić, A., & Puška, A. (2023). Integrating Multi-Criteria Decision-Making Methods with Sustainable Engineering: A Comprehensive Review of Current Practices. Eng, 4, 1536-1549. https://doi.org/10.3390/eng4020088

[44] Theilig, K., Lourenço, B., Reitberger, R., & Lang, W. (2024). Life cycle assessment and multi-criteria decision-making for sustainable building parts: criteria, methods, and application. International Journal of Life Cycle Assessment, 29, 1965-1991. https://doi.org/10.1007/s11367-024-02331-9

[45] Thomas, R. V., Nair, D. G., & Enserink, B. (2023). Conceptual framework for sustainable construction. Architectural Structural Construction, 3, 129-141. https://doi.org/10.1007/s44150-023-00087-8

[46] Tu, Y., Zhou, R., Zhou, X., & Lev, B. (2023). Incorporating a new perspective of Z-number into ELECTRE II with group consensus involving reliance degree and prospect theory. Applied Intelligence, 53, 23316-23335. https://doi.org/10.1007/s10489-023-04757-4

[47] Ulutaş, A., Balo, F., Mirković, K., Stević, Ž., & Mostafa, M. M. H. (2023). MCDM Model for Critical Selection of Building And Insulation Materials. J. Civ. Eng. Manage. https://doi.org/10.3846/jcem.2023.19569

[48] Vilutiene, T., Kumetaitis, G., Kiaulakis, A., & Kalibatas, D. (2020). Assessing the sustainability of alternative structural solutions of a building. Buildings. https://doi.org/10.3390/buildings10020036

[49] Wang, C., Fu, H., Hsu, H., Nguyen, V. T., Nguyen, V. T., & Ahmar, A. S. (2021). A model for selecting a biomass furnace supplier. Comput. Mater. Continua. https://doi.org/10.32604/cmc.2021.016284

[50] Zhang, F., Ju, Y., Santibanez Gonzalez, E. D. R., Wang, A., Dong, P., & Giannakis, M. (2021). Evaluation of construction and demolition waste utilization schemes. J. Clean. Prod. https://doi.org/10.1016/j.jclepro.2021.127907

Downloads

Published

2025-12-01

How to Cite

Chao Abdulrahman Yaghmour, Ahmed Yousry, Hussein Kaya, Ibrahim Alowais, & Zied Bahroun1* Karam Al-Assaf. (2025). Advancing Sustainable Material Selection in Construction: A Systematic Review of Multi-Criteria Decision-Making Applications. Decision Making: Applications in Management and Engineering, 8(2), 663–683. https://doi.org/10.31181/dmame8220251583