Expert Twin: A Digital Twin with an Integrated Fuzzy-Based Decision-Making Module
DOI:
https://doi.org/10.31181/dmame8120251181Keywords:
Expert Twin (ET), Digital Twin (DT), Fuzzy Logic (FL), Manufacturing Simulation, Intelligence layer, Cyber-Physical Systems (CPSs), Decision-Making SupportAbstract
Digitalization and the application of modern Industry 4.0 solutions are becoming increasingly important to remain competitive as product ranges expand and global supply chains grow. This paper presents a new Digital Twin framework to achieve robustness in manufacturing process optimization and enhance the efficiency of decision support. Most digital twins in the literature synchronously represent the real system without any control elements despite the bidirectional data link. The proposed approach combines the advantages of traditional process simulations with a real-time communication and data acquisition method using programmable logic controllers designed to control automated systems. In addition, it complements this by utilizing human experience and expertise in modeling using Fuzzy Logic to create a control-enabled digital twin system. The resulting "Expert Twin" system reduces the reaction time of the production to unexpected events and increases the efficiency of decision support; it generates and selects alternatives, therefore creating smart manufacturing. The Expert Twin framework was integrated, tested, and validated on an automated production sample system in a laboratory environment. In the experimental scenarios carried out, the method production increased production line utility by up to 28% and the number of re-schedules can be halved.
Downloads
References
Babaeimorad, S., Fattahi, P., Fazlollahtabar, H., & Shafiee, M. (2024). An integrated optimization of production and preventive maintenance scheduling in industry 4.0. Facta Universitatis, Series: Mechanical Engineering. https://doi.org/10.22190/FUME230927014B
Božanić, D., Epler, I., Puška, A., Biswas, S., Marinković, D., & Koprivica, S. (2024). Application of the DIBR II–rough MABAC decision-making model for ranking methods and techniques of lean organization systems management in the process of technical maintenance. Facta Universitatis, Series: Mechanical Engineering, 22(1), 101-123. https://doi.org/10.22190/FUME230614026B
Isametova, M., Nussipali, R., Karaivanov, D., Abilkhair, Z., & Isametov, A. (2022). Computational and Experimental Study of the Composite Material for the Centrifugal Pump Impellers Manufacturing. Journal of Applied and Computational Mechanics, 8(4), 1407-1421. https://doi.org/10.22055/jacm.2022.40366.3574
Chaubey, S. K., Gupta, K., & Madić, M. (2023). An investigation on mean roughness depth and material erosion speed during manufacturing of stainless-steel miniature ratchet gears by wire-EDM. Facta Universitatis, Series: Mechanical Engineering, 21(2), 239-258. https://doi.org/10.22190/FUME221220012C
Sljivic, M., Wagner, S., Pavlovic, A., & Marinkovic, D. (2022). Metal Additive Manufacturing of End-Use Components and Parts: A Practical Overview. In Virtual Conference on Mechanical Fatigue (pp. 149-160). Cham: Springer International Publishing. https://doi.org/10.1007/978-3-030-91847-7_15
Brautigam, A., Szalai, S., & Fischer, S. (2023). Investigation of the application of austenitic filler metals in paved tracks for the repair of the running surface defects of rails considering field tests. Facta Universitatis, Series: Mechanical Engineering. https://doi.org/10.22190/FUME230828032B
Fischer, S., Harangozó, D., Németh, D., Kocsis, B., Sysyn, M., Kurhan, D., & Brautigam, A. (2023). Investigation of heat-affected zones of thermite rail weldings. Facta Universitatis, Series: Mechanical Engineering. https://doi.org/10.22190/FUME221217008F
Tica, M., Vrcan, Ž., Troha, S., & Marinković, D. (2023). Reversible Planetary Gearsets Controlled by Two Brakes, for Internal Combustion Railway Vehicle Transmission Applications. Acta Polytechnica Hungarica, 20(1), 95–108. https://doi.org/10.12700/APH.20.1.2023.20.7
Ézsiás, L., Tompa, R., & Fischer, S. (2024). Investigation of the Possible Correlations between Specific Characteristics of Crushed Stone Aggregates. 1(1), 10-26. https://doi.org/10.31181/smeor1120242
Pfeiffer, A., Gyulai, D., Kádár, B., & Monostori, L. (2016). Manufacturing Lead Time Estimation with the Combination of Simulation and Statistical Learning Methods. Procedia Cirp, 41, 75–80. https://doi.org/10.1016/j.procir.2015.12.018 DOI: https://doi.org/10.1016/j.procir.2015.12.018
Monostori, L., Kádár, B., Bauernhansl, T., Kondoh, S., Kumara, S., Reinhart, G., Sauer, O., Schuh, G., Sihn, W., & Ueda, K. (2016). Cyber-physical systems in manufacturing. CIRP Annals, 65(2), 621–641. https://doi.org/10.1016/j.cirp.2016.06.005 DOI: https://doi.org/10.1016/j.cirp.2016.06.005
Tilbury, D. M. (2019). Cyber-Physical Manufacturing Systems. Annual Review of Control, Robotics, and Autonomous Systems, 2, 427–443. https://doi.org/10.1146/annurev-control-053018-023652
Ward, R., Soulatiantork, P., Finneran, S., Hughes, R., & Tiwari, A. (2021). Real-time vision-based multiple object tracking of a production process: Industrial digital twin case study. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 235(11), 1861–1872. https://doi.org/10.1177/09544054211002464
Li, Y., Tao, Z., Wang, L., Du, B., Guo, J., & Pang, S. (2023). Digital twin-based job shop anomaly detection and dynamic scheduling. Robotics and Computer-Integrated Manufacturing, 79, 102443. https://doi.org/10.1016/j.rcim.2022.102443
Luo, D., Thevenin, S., & Dolgui, A. (2023). A state-of-the-art on production planning in Industry 4.0. International Journal of Production Research, 61(19), 6602–6632. https://doi.org/10.1080/00207543.2022.2122622
Turner, C. J., & Garn, W. (2022). Next generation DES simulation: A research agenda for human centric manufacturing systems. Journal of Industrial Information Integration, 28, 100354. https://doi.org/10.1016/j.jii.2022.100354
Liu, X., Jiang, D., Tao, B., Xiang, F., Jiang, G., Sun, Y., Kong, J., & Li, G. (2023). A systematic review of digital twin about physical entities, virtual models, twin data, and applications. Advanced Engineering Informatics, 55, 101876. https://doi.org/10.1016/j.aei.2023.101876
Tao, F., Zhang, H., & Zhang, C. (2024). Advancements and challenges of digital twins in industry. Nature Computational Science, 4(3), 169–177. https://doi.org/10.1038/s43588-024-00603-w
Ladj, A., Wang, Z., Meski, O., Belkadi, F., Ritou, M., & Da Cunha, C. (2021). A knowledge-based Digital Shadow for machining industry in a Digital Twin perspective. Journal of Manufacturing Systems, 58, 168–179. https://doi.org/10.1016/j.jmsy.2020.07.018
Dos Santos, C. H., Montevechi, J. A. B., De Queiroz, J. A., De Carvalho Miranda, R., & Leal, F. (2022). Decision support in productive processes through DES and ABS in the Digital Twin era: A systematic literature review. International Journal of Production Research, 60(8), 2662–2681. https://doi.org/10.1080/00207543.2021.1898691
Ricondo, I., Porto, A., & Ugarte, M. (2021). A digital twin framework for the simulation and optimization of production systems. Procedia CIRP, 104, 762–767. https://doi.org/10.1016/j.procir.2021.11.128
Resman, M., Protner, J., Simic, M., & Herakovic, N. (2021). A Five-Step Approach to Planning Data-Driven Digital Twins for Discrete Manufacturing Systems. Applied Sciences, 11(8), 3639. https://doi.org/10.3390/app11083639
Eyring, A., Hoyt, N., Tenny, J., Domike, R., & Hovanski, Y. (2022). Analysis of a closed-loop digital twin using discrete event simulation. The International Journal of Advanced Manufacturing Technology, 123(1), 245–258. https://doi.org/10.1007/s00170-022-10176-5
Onaji, I., Tiwari, D., Soulatiantork, P., Song, B., & Tiwari, A. (2022). Digital twin in manufacturing: Conceptual framework and case studies. International Journal of Computer Integrated Manufacturing, 35(8), 831–858. https://doi.org/10.1080/0951192X.2022.2027014
Tliba, K., Diallo, T. M. L., Penas, O., Ben Khalifa, R., Ben Yahia, N., & Choley, J.-Y. (2023). Digital twin-driven dynamic scheduling of a hybrid flow shop. Journal of Intelligent Manufacturing, 34(5), 2281–2306. https://doi.org/10.1007/s10845-022-01922-3
Negri, E., Berardi, S., Fumagalli, L., & Macchi, M. (2020). MES-integrated digital twin frameworks. Journal of Manufacturing Systems, 56, 58–71. https://doi.org/10.1016/j.jmsy.2020.05.007
Monek, G. D., & Fischer, S. (2023). IIoT-Supported Manufacturing-Material-Flow Tracking in a DES-Based Digital-Twin Environment. Infrastructures, 8(4), 75. https://doi.org/10.3390/infrastructures8040075
Monek, G. D., & Fischer, S. (2023). DES and IIoT fusion approach towards real-time synchronization of physical and digital components in manufacturing processes. Reports in Mechanical Engineering, 4(1), 161–174. https://doi.org/10.31181/rme040115092023m DOI: https://doi.org/10.31181/rme040115092023m
Yu, H., Han, S., Yang, D., Wang, Z., & Feng, W. (2021). Job Shop Scheduling Based on Digital Twin Technology: A Survey and an Intelligent Platform. Complexity, 2021, 1–12. https://doi.org/10.1155/2021/8823273
Villalonga, A., Negri, E., Biscardo, G., Castano, F., Haber, R. E., Fumagalli, L., & Macchi, M. (2021). A decision-making framework for dynamic scheduling of cyber-physical production systems based on digital twins. Annual Reviews in Control, 51, 357–373. https://doi.org/10.1016/j.arcontrol.2021.04.008
Mo, F., Rehman, H. U., Monetti, F. M., Chaplin, J. C., Sanderson, D., Popov, A., Maffei, A., & Ratchev, S. (2023). A framework for manufacturing system reconfiguration and optimisation utilising digital twins and modular artificial intelligence. Robotics and Computer-Integrated Manufacturing, 82, 102524. https://doi.org/10.1016/j.rcim.2022.102524
Francalanza, E., Borg, J. C., & Constantinescu, C. (2016). A Fuzzy Logic Based Approach to Explore Manufacturing System Changeability Level Decisions. Procedia CIRP, 41, 3–8. https://doi.org/10.1016/j.procir.2015.12.011 DOI: https://doi.org/10.1016/j.procir.2015.12.011
Saraeian, S., & Shirazi, B. (2022). Digital twin-based fault tolerance approach for Cyber–Physical Production System. ISA Transactions, 130, 35–50. https://doi.org/10.1016/j.isatra.2022.03.007
Wang, X., Hu, X., & Wan, J. (2024). Digital-twin based real-time resource allocation for hull parts picking and processing. Journal of Intelligent Manufacturing, 35(2), 613–632. https://doi.org/10.1007/s10845-022-02065-1
Tulasiraman, M., Dayanandan, U., Ferrnandez, T. F., Vellaichamy, V., & Rajasekeran, D. (2024). Fuzzy Logic-enabled Autonomous IoT Systems for proactive maintenance in industry 4.0 digital twin scenarios. Optical and Quantum Electronics, 56(4), 505. https://doi.org/10.1007/s11082-023-06133-5
Glatt, M., Sinnwell, C., Yi, L., Donohoe, S., Ravani, B., & Aurich, J. C. (2021). Modeling and implementation of a digital twin of material flows based on physics simulation. Journal of Manufacturing Systems, 58, 231–245. https://doi.org/10.1016/j.jmsy.2020.04.015
Turgay, S., Bilgin, Ö., & Akar, N. (2022). Digital Twin Based Flexible Manufacturing System Modelling with Fuzzy Approach. Advances in Computer, Signals and Systems, 6(7), 10-17. https://doi.org/10.23977/acss.2022.060702
Ait-Alla, A., Kreutz, M., Rippel, D., Lütjen, M., & Freitag, M. (2021). Simulated-based methodology for the interface configuration of cyber-physical production systems. International Journal of Production Research, 59(17), 5388–5403. https://doi.org/10.1080/00207543.2020.1778209
Kritzinger, W., Karner, M., Traar, G., Henjes, J., & Sihn, W. (2018). Digital Twin in manufacturing: A categorical literature review and classification. IFAC-PapersOnLine, 51(11), 1016–1022. https://doi.org/10.1016/j.ifacol.2018.08.474
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Decision Making: Applications in Management and Engineering
This work is licensed under a Creative Commons Attribution 4.0 International License.