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Accurate forecasting of international natural gas prices is essential for effective 
decision-making within the context of a volatile energy market, as unpredictable 
responses to price fluctuations often arise from non-stationary behaviour. 
Traditional econometric approaches frequently encounter limitations in capturing 
market volatility, nonlinear dynamics, and structural breaks, which diminishes 
their practical utility for strategic planning and operational decisions. This study 
seeks to conduct a comparative analysis of multiple machine learning (ML) 
techniques, including linear regression, support vector machines, decision trees, 
random forests, neural networks, and ensemble methods, in forecasting 
international natural gas prices using datasets obtained from the International 
Energy Agency (IEA), Global Data, and the Bloomberg terminal. The findings 
indicate that more sophisticated ML models, particularly ensemble methods and 
neural networks, outperform conventional forecasting approaches in terms of 
accuracy and reliability. Furthermore, the study highlights that forecasts 
generated through ML can significantly enhance decision-making processes for 
key stakeholders in the natural gas sector, including government policymakers, 
investors, and oil and gas producers, by informing structured risk management, 
optimising resource allocation, and supporting long-term strategic planning. 

 
1. Introduction 

Natural gas represents a key element of the global energy mix, emphasising the importance of 
accurate price forecasting [21]. As a commodity utilised for electricity generation, heating, and 
industrial applications, fluctuations in natural gas prices have significant economic implications [19]. 
Traditional forecasting approaches, including time series analysis and econometric models, often 
require substantial time to capture the complex dynamics of natural gas markets [28]. These 
conventional methods generally rely on linear functions and historical ratios, limiting their ability to 
account for market shocks and the nonlinear interactions among influencing factors [32].  

Consequently, ML has emerged as a promising approach for addressing challenges in natural gas 
price prediction, particularly through the application of natural language processing (NLP) 
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techniques. ML models are particularly effective in recognizing higher-order and nonlinear 
relationships and are primarily advantageous for identifying patterns within data [25]. By leveraging 
large datasets and a combination of algorithms, ML approaches can surpass the capabilities of 
traditional models, offering improved predictive performance [30]. This capacity is especially 
valuable in the context of global natural gas markets, where pricing is influenced by geopolitical 
events, fluctuations in supply and demand, and environmental regulations [6]. Accurate forecasting 
of natural gas prices is therefore critical, as these figures are highly detailed and sensitive, directly 
impacting decision-making within the energy sector.  

Furthermore, precise natural gas price forecasts provide significant benefits for key 
stakeholders, including policymakers, investors, and energy producers [23], enabling them to 
evaluate potential risks, allocate resources efficiently, and develop strategic plans. Enhanced 
forecasting accuracy supports risk management, cost optimisation, capacity planning, and strategic 
administrative decision-making [26]. Over recent years, international natural gas prices have 
exhibited considerable volatility, with trends in liquefied natural gas (LNG) markets expanding amid 
the rise of renewables and evolving regulatory frameworks, introducing further complexity for price 
prediction [1]. These conditions necessitate predictive models capable of handling high-dimensional 
and dynamically changing datasets. ML techniques, with their ability to learn from extensive 
datasets and adapt over time, are particularly well-suited to address these challenges [12]. 
Accordingly, this study aims to develop and validate multiple ML models for forecasting natural gas 
prices in international markets. While ML models demonstrated superior predictive performance 
compared to traditional methods, limitations inherent in generic ML implementations highlight 
areas for further refinement. This research contributes both theoretically and practically by 
providing valuable insights for energy sector stakeholders.  

The application of ML to natural gas pricing constitutes a novel area of investigation. It aligns 
with broader trends emphasising human-centric, data-driven solutions across regulated sectors, 
with the aim of improving forecast accuracy and enhancing organisational planning [7]. Given the 
rapid evolution of energy markets, the relevance of reliable and precise forecasting is expected to 
grow, rendering this study timely and significant. The primary objective of this research is to 
evaluate the effectiveness of various ML techniques in forecasting international natural gas prices. 
Specifically, the study aims to:  

• Compare the predictive performance of ML models including Linear Regression, Support Vector 
Machines (SVM), Decision Trees, Random Forests, Neural Networks, and Ensemble Methods.  

• Assess the accuracy and reliability of these models in capturing the complex, nonlinear dynamics 
of natural gas pricing.  

• Identify the strengths and limitations of each model within the context of price forecasting.  
Provide actionable insights and recommendations for energy sector stakeholders to enhance 

decision-making and risk management through ML-based forecasts.  
The study seeks to address the following research questions:  

1. How do ML models perform relative to traditional statistical methods in forecasting natural gas 
prices?  

2. Which ML techniques deliver the highest levels of accuracy and reliability for price predictions?  
3. What are the specific advantages and limitations of different ML models in capturing the 

dynamics of international natural gas markets?  
4. How can ML-derived forecasts be integrated into strategic decision-making processes within the 

energy sector?  
By offering a comprehensive evaluation of various ML approaches for predicting international 

natural gas prices, this research advances the field of energy economics. It provides reliable 



Decision Making: Applications in Management and Engineering 

Volume 8, Issue 2 (2025) 319-337 

321 

 
 

 

guidance for investors, policymakers, and analysts, supporting more informed decision-making and 
enhancing risk management practices in the energy sector.  

 
2. Review of Literature 

2.1 Price Forecasting in Commodity Markets 
Forecasting commodity prices represents a complex yet critical task due to the uncertainty and 

multitude of factors influencing price fluctuations [18]. Accurate forecasts enable investors, 
policymakers, and commercial entities to make informed decisions and mitigate associated risks. 
Traditional forecasting approaches in commodity markets often employ econometric models, such 
as the Auto Regressive Integrated Moving Average (ARIMA), which primarily rely on historical price 
data [14]. While these methods provide foundational insights, they are limited in capturing the 
intricate and dynamic nature of commodity markets. Advances in statistical modelling, particularly 
Generalised Autoregressive Conditional Heteroskedasticity (GARCH) models, have improved the 
capacity to account for dependencies typical of financial time series [8]. Machine Learning (ML) 
techniques, including SVM, Random Forests, and Neural Networks, offer the ability to process large-
scale datasets and identify latent patterns that traditional models might overlook [11]. These 
models are adaptable, allowing retraining on updated datasets, which is particularly valuable in 
rapidly evolving market environments. Neural Networks and deep learning models are especially 
useful for commodity price forecasting, as they can capture complex nonlinear interactions among 
multiple input variables [16]. Empirical evidence indicates that ML models generally outperform 
conventional time series methods in predictive accuracy [22].  

Ensemble methods have gained prominence in commodity price forecasting by combining 
predictions from multiple models, thereby enhancing overall forecast performance. Techniques 
such as bagging and boosting can effectively adjust bias and variance, accommodating the inherent 
uncertainty and complexity of commodity markets [29]. ML models can also incorporate 
macroeconomic indicators and market sentiment data to improve forecast precision. 
Macroeconomic variables, including interest rates, inflation, and Gross Domestic Product, serve as 
determinants of commodity prices and are typically derived from official statistical sources [10]. 
Despite these advancements, forecasting remains subject to limitations. Model accuracy may be 
affected by shifts in market conditions, regulatory changes, or geopolitical events, and forecast 
reliability is contingent upon frequent model updates and access to real-time data [24]. 
Consequently, ML represents an advanced evolution of traditional approaches, offering enhanced 
predictive accuracy and flexibility, which is critical for stakeholders in commodity markets.  

2.2 Machine Learning Techniques in Financial Forecasting 
ML has profoundly influenced financial forecasting by introducing innovative methods for 

predicting market behaviour, processing large volumes of data, detecting latent patterns, and 
adapting to new information [3]. These techniques have frequently demonstrated superior 
performance compared to traditional approaches [27]. SVM is commonly applied to classification 
and regression tasks within financial forecasting, aiming to identify the hyperplane that maximizes 
separation within the data, thereby improving predictions of stock prices and market dynamics [20]. 
SVMs are particularly effective in high-dimensional spaces, capable of non-linear mapping through 
kernel functions, and mitigate model overfitting, contributing to more accurate forecasts in stock 
pricing, credit scoring, and risk management [4]. SVMs are advantageous in financial applications 
due to their ability to incorporate numerous input and output variables while providing measures of 
feature importance. Similarly, ANNs are employed to detect intricate patterns within historical 
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financial data [13]. Algorithms such as XGBoost are widely utilised in financial prediction due to 
their robust performance and high accuracy across various applications, including credit default 
prediction and stock price forecasting [9].  

K-Nearest Neighbors (KNN) functions as a classification and regression method that makes no 
prior assumptions regarding data distribution. It assigns target variable values based on the k 
nearest training instances within the feature space, making it suitable for specific financial 
forecasting tasks such as analyzing stock market trends [15]. Reinforcement Learning (RL) applies 
algorithms to dynamic environments where decisions are sequentially conditioned. In financial 
contexts, RL can optimize portfolio management and trading strategies by rewarding agents that 
achieve the highest returns through continuous interaction with market environments [17]. The 
integration of ML with NLP techniques further enhances forecasting capabilities, exemplified by 
sentiment analysis, which evaluates financial reports to gauge market sentiment. Real-time 
sentiment models can assess perceptions of both the general public and investors, providing 
substantial value for market analysis [31]. Collectively, these ML techniques enable efficient 
processing of complex financial datasets, improve forecasting precision, and equip stakeholders 
with the capacity to navigate volatile markets, informing strategic economic and investment 
decisions.  

 
3. Methodology 

The methodology outlines the procedures employed to conduct the study, including data 
collection from IEA, Global Data, and the Bloomberg Terminal, followed by data cleaning, feature 
engineering, model selection, and training (see Figure 1). It further details the processes involved in 
model training, validation, and testing, as well as the evaluation metrics used, including cross-
validation, and the optimization of hyper parameters to ensure balanced and accurate forecasting 
of natural gas prices. 

 
Fig.1: Research Methodology 

4. Data Collection and Pre-Processing 

4.1 Data Sources 
For the purpose of forecasting international natural gas prices using ML techniques, datasets 

from IEA Agency [2], GlobalData, and the Bloomberg Terminal [5] were utilized. These datasets 
provide extensive and detailed insights into the dynamics of the natural gas market. The IEA dataset 
offers comprehensive information on the global natural gas market, encompassing supply, demand, 
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and international trade. It includes approximately 50,000 data points spanning monthly historical 
records from 2000 to 2023, covering over one hundred countries. The dataset facilitates analysis of 
production and consumption trends, as well as export and import volumes, offering a 
macroeconomic perspective essential for understanding broad market trends and price movements 
[2].  

GlobalData provides precise and extensive data on international natural gas markets, including 
historical prices, volumes, consumption figures, and projections. This dataset comprises around 
30,000 daily records from 2005 to 2023, capturing historical oil prices, production, and consumption 
patterns. It serves a critical role in both historical price analysis and market prediction, thereby 
supporting the training and validation of ML models (GlobalData, 2024). The Bloomberg Terminal 
contributes high-frequency financial data, with approximately 100,000 records of minute-by-minute 
data for multiple natural gas contracts and spot prices from 2010 to 2023. Incorporating this 
financial information into ML models enhances predictive performance by providing real-time 
market insights [5]. A summary of the datasets utilized in this study is presented in Table 1.  

Table 1 
Summary of Data Sources Used for Natural Gas Price Forecasting  

Source Description Record Size Usage 

IEA Global data on natural gas markets, including 
supply, demand, and trade. 

~50,000 records (monthly data 
from 2000-2023). 

Understanding global trends 
and market dynamics. 

GlobalData Extensive data on global natural gas markets, 
including historical prices, production, and 
consumption. 

~30,000 records (daily data from 
2005-2023). 

Historical price data and 
market forecasts. 

Bloomberg 
Terminal 

Real-time and historical data on natural gas 
prices, including futures and spot prices. 

~100,000 records (minute-by-
minute data from 2010-2023). 

Financial analysis and real-
time forecasting. 

4.2 Data Cleaning 
Data cleaning constitutes a critical stage in the pre-processing of datasets intended for the 

development of accurate and reliable ML models. This process involves systematically addressing 
issues such as missing values, duplicate entries, and outliers to ensure high data quality. Missing 
values, in particular, can compromise the integrity of model analyses and predictions. A common 
approach to handle missing data is mean imputation, in which absent values are replaced with the 
mean of the corresponding feature. For instance, given a dataset X containing n observations and m 
features, the imputed value for feature j can be represented as follows: 

𝑥̂𝑖𝑗 =
1

𝑛𝑗
∑ 𝑥𝑖𝑗

𝑛
𝑖=1  where 𝑥𝑖𝑗 ≠ NaN   (1) 

Here, 𝑥̂𝑖𝑗 represents the imputed value, and 𝑛𝑗  is the number of non-missing values in the 

feature 𝑗. Duplicate records can introduce bias into ML models by disproportionately weighting 
certain data points. To detect such duplicates, the values across all features in each row are 
compared, and entries exhibiting complete similarity across all attributes are identified and 
addressed as duplicates. 

𝑋𝑑𝑢𝑝𝑙𝑖𝑐𝑎𝑡𝑒 = {𝑥𝑖 ∣ 𝑥𝑖 = 𝑥𝑗  for some 𝑖 ≠ 𝑗}  (2) 

The final cleaned dataset is generated by eliminating all identified duplicate records. 
𝑋𝑐𝑙𝑒𝑎𝑛 = 𝑋 ∖ 𝑋𝑑𝑢𝑝𝑙𝑖𝑐𝑎𝑡𝑒    (3)  

Outliers can substantially affect the performance of ML models, particularly when they are not 
representative of the general data distribution. A commonly employed technique for outlier 
detection is the z-score, which quantifies the number of standard deviations a data point deviates 
from the mean. For a given feature vector xj, the z-score for each observation xij is calculated as 
follows: 
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𝑧𝑖𝑗 =
𝑥𝑖𝑗−𝜇𝑗

𝜎𝑗
     (4) 

Where 𝜇𝑗 is the mean of the feature 𝑗. 𝜎𝑗  is the standard deviation of the feature 𝑗. 

Data points with |𝑧𝑖𝑗| > 3 are typically considered outliers and are removed: 

𝑋𝑜𝑢𝑡𝑙𝑖𝑒𝑟 = {𝑥𝑖𝑗||𝑧𝑖𝑗| > 3}    (5)  

The resulting dataset, following the completion of the cleaning process, is as follows: 
𝑋𝑐𝑙𝑒𝑎𝑛 = 𝑋 ∖ 𝑋𝑜𝑢𝑡𝑙𝑖𝑒𝑟    (6) 
The implementation of these procedures ensures that the dataset is refined, consistent, and 

suitably prepared for subsequent analysis and model development. 

4.3 Feature Engineering 
Feature engineering plays a crucial role in constructing new variables from existing data to 

support the development of decision-making models. This process can involve creating moving 
averages, volatility indices, and lagged variables. Moving averages are particularly useful for 
smoothing short-term fluctuations and highlighting underlying trends. For a time series {pt} 
representing natural gas prices, the simple moving average (SMA) over a window of size k is 
computed as follows: 

SMA𝑡 =
1

𝑘
∑ 𝑝𝑡−1

𝑘−1
𝑖=0     (7) 

Here, SMA𝑡 is the moving average at the time 𝑡, and 𝑘 is the number of periods in the moving 
average window. Volatility measures the degree of price variation over time. It is often calculated as 

the standard deviation of price returns. For a time-series, of returns {𝑟𝑡}, where 𝑟𝑡 =
𝑝𝑡−𝑝𝑡−1

𝑝𝑡−1
, the 

rolling standard deviation over a window size 𝑘 is: 

𝑉𝑜𝑙𝑎𝑡𝑖𝑙𝑖𝑡𝑦𝑡 = √
1

𝑘−1
∑ (𝑟𝑡−𝑖

𝑘−1
𝑖=0 − 𝑟̅𝑡)2  (8) 

In this formula, 𝑉𝑜𝑙𝑎𝑡𝑖𝑙𝑖𝑡𝑦𝑡 represents the volatility at the time 𝑡, 𝑘 is the window size, 𝑟𝑡−𝑖  is 
the return at the time 𝑡 − 𝑖, and 𝑟̅𝑡 is the mean return over the window. Lagged variables are 
previous values of a time series used as predictors. They help capture the temporal dependencies in 
the data. For a time-series {𝑝𝑡}, a lagged variable for lag 𝑙 is: 

𝑝𝑡−𝑙      (9) 
Here, 𝑝𝑡−𝑙 is the price at the time 𝑡 − 𝑙. 
When feature engineering generates new variables that capture essential patterns and trends 

within the data, it can enhance the model’s predictive capacity for the dataset. These engineered 
features supply valuable information to ML models, enabling them to more effectively characterise 
natural gas prices and deliver more reliable forecasts. 

4.4 Machine Learning Models 
The ML techniques evaluated in this study include Linear Regression, SVM, Decision Trees, 

Random Forests, Neural Networks, and the proposed ensemble methods, emphasising their 
respective roles in forecasting natural gas prices. 

 

4.4.1 Linear Regression 
Linear Regression represents a foundational modelling approach that presumes a linear 

association between input variables (features) and the output variable (target). The model 
estimates the target variable y according to the following equation: 

𝑦 = 𝛽0 + 𝛽1𝑥1 + 𝛽2𝑥2 + ⋯ + 𝛽𝑝𝑥𝑝 + 𝜖  (10) 
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Where 𝛽0 is the intercept. 𝛽1, 𝛽2, … , 𝛽𝑝 are the coefficients for each feature 𝑥1, 𝑥2, … , 𝑥𝑝. 𝜖 is 

the error term.  
The model coefficients are determined by minimising the sum of squared errors (SSE) between 

the predicted and observed values. 

4.4.2 Support Vector Machines 
SVM are supervised models for regression and classification, aiming to find a function f(x) that 

remains within ϵ of observed values y while maximising flatness. The optimisation problem is 
formulated as follows: 

min 𝑤,𝑏,𝜉,𝜉∗
1

2
‖𝑤‖2 + 𝐶 ∑ (𝜉𝑖 + 𝜉𝑖

∗)𝑛
𝑖=1   (11) 

Subject to: 
𝑦𝑖 − (𝑤 ⋅ 𝑥𝑖 + 𝑏) ≤ 𝜖 + 𝜉𝑖 
(𝑤 ⋅ 𝑥𝑖 + 𝑏) − 𝑦𝑖 ≤ 𝜖 + 𝜉𝑖

∗ 
𝜉𝑖, 𝜉𝑖

∗ ≥ 0 
Where 𝑤 is the weight vector, 𝑏 is the bias, 𝜉, 𝜉∗ are slack variables, and 𝐶 is a regularization 

parameter. 

4.4.3 Decision Trees and Random Forests 
Decision Trees partition data using optimised feature splits, while Random Forests aggregate 

multiple trees’ outputs to improve predictive accuracy, with regression results computed as the 
mean of individual tree predictions. 

𝑦̂ =
1

𝐵
∑ 𝑇𝑏(𝑥)𝐵

𝑏=1      (12) 

Where 𝑦̂ is the predicted value, 𝐵 is the number of trees, and 𝑇𝑏(𝑥) is the prediction from the 

𝑏th tree. 

4.4.4 Neural Networks 
Neural Networks consist of interconnected layers of neurons that process input data by 

computing weighted sums and applying activation functions. For a single-layer network, the output 
is given as follows: 

𝑦 = 𝑓(∑ (𝑤𝑗𝑥𝑗 + 𝑏)𝑝
𝑗=1 )    (13) 

In this context, f denotes the activation function (e.g., ReLU, sigmoid), wj represents the 
weights, and b corresponds to the bias term. For deep Neural Networks, this computation is 
iteratively applied across multiple layers, enabling the model to capture and learn complex patterns 
within the data. 

4.5 Proposed Ensemble Methods 
Ensemble methods synthesise the outputs of multiple models to achieve superior predictive 

performance. One prominent approach, Bagging (Bootstrap Aggregating), constructs numerous 
models using distinct subsets of the dataset and combines their predictions, typically by averaging. 
In regression scenarios, the ensemble prediction is derived as the mean of the individual model 
outputs: 

𝑦̂ =
1

𝐵
∑ ŷ𝑏

𝐵
𝑏=1      (14) 

Where ŷ𝑏 is the prediction from the 𝑏th model. Boosting involves the sequential training of 
models, with each successive model concentrating on correcting the errors of its predecessors. The 
ensemble’s final prediction is obtained as a weighted aggregation of the outputs from all 
constituent models: 
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𝑦̂ =
1

𝐵
∑ αbŷ𝑏

𝐵
𝑏=1      (15)  

Where αb is the weight for the 𝑏th model, determined by its accuracy. The utilisation of these 
ML models enables the identification of diverse patterns and complex relationships within the data, 
thereby improving the precision of natural gas price forecasts. Table 2 presents the architecture of 
the proposed ensemble model employed in this study. 

Table 2 
Algorithm Proposed Ensemble Model 

Input: Training data 𝐷, base learners {𝐿1, 𝐿2, . . . , 𝐿𝑛}, meta-learner 𝑀, number of folds 𝐾 for cross-validation 
Output: Trained ensemble model 
1. Initialize base learners {𝐿1, 𝐿2, . . . , 𝐿𝑛} 
2. Divide D into K folds: {𝐷1, 𝐷2, . . . , 𝐷𝐾} 
3. For 𝑖 =  1 𝑡𝑜 𝐾 Do 
4.  Train base learners on 𝐷 \ 𝐷𝑖  
5.  Predict on using 𝐷𝑖  using each base learner, store predictions 𝑃𝑖  
6.  Aggregate predictions 𝑃𝑖  to form meta-features 𝐹𝑖  
7.  Train meta-learner M on Fi 
8. End For 
9. Train final base learners on entire dataset 𝐷 
10. Aggregate final base learner predictions to form final meta-features 𝐹 
11. Train final meta-learner 𝑀 on 𝐹 
12 Return Trained ensemble model 

4.6 Model Evaluation Metrics 
The performance of the ML models was assessed using evaluation metrics, namely R², RMSE, 

MSE, and MAE. 

4.6.1 MAE 
MAE quantifies the average size of prediction errors, ignoring their direction, and is calculated as 

follows: 

MAE =
1

𝑛
∑ |𝑦𝑖 − 𝑦̂𝑖|𝑛

𝑖=1     (16) 

Where 𝑦𝑖 is the actual value, 𝑦̂𝑖 is the predicted value, and 𝑛 is the number of observations. 
It provides a useful measure of the typical size of errors in the model’s predictions. 

4.6.2 MSE 
MSE calculates the average of the squared differences between predicted and actual values. By 

assigning greater weight to larger errors, it is particularly useful for identifying models that produce 
substantial deviations. The formula is as follows: 

MSE =
1

𝑛
∑ (𝑦𝑖 − 𝑦̂𝑖)

2𝑛
𝑖=1     (17)  

Where 𝑦𝑖 is the actual value, 𝑦̂𝑖 is the predicted value, and 𝑛 is the number of observations. 

4.6.3 RMSE 
RMSE represents the square root of MSE and quantifies the error magnitude in the same units 

as the original data, enhancing interpretability. It is computed as follows: 

RMSE = √
1

𝑛
∑ (𝑦𝑖 − 𝑦̂𝑖)2𝑛

𝑖=1    (18) 

Where 𝑦𝑖 is the actual value, 𝑦̂𝑖 is the predicted value and 𝑛 is the number of observations. 
RMSE is especially valuable for assessing the typical magnitude of prediction errors. 
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4.6.4 R-Squared (𝑅2) 
R², or the coefficient of determination, measures the proportion of variance in the dependent 

variable explained by the independent variables and is calculated as follows: 

R2 = 1 −
∑ (𝑦𝑖−𝑦̂𝑖)2𝑛

𝑖=1

∑ (𝑦𝑖−𝑦̅𝑖)2𝑛
𝑖=1

    (19) 

Where 𝑦𝑖 is the actual value, 𝑦̂𝑖 is the predicted value, 𝑦̅𝑖  is the mean of the actual values and 𝑛 
is the number of observations. R² values range between 0 and 1, with a value of 1 representing 
perfect prediction and 0 indicating no predictive capability. R² is useful for evaluating the extent to 
which the model accounts for the variability of the response variable around its mean. 

By applying these evaluation metrics, the performance of the ML models can be quantitatively 
assessed, enabling the selection of the most effective model for forecasting natural gas prices. 

4.6.5 Experimental Design 
This section details the procedures utilized for constructing the experimental datasets and the 

models applied, alongside the processes of training, validation, cross-validation, and hyper 
parameter optimization. 

4.6.6 Training and Validation 
The training dataset is employed to fit the ML model, allowing it to learn the underlying patterns 

present within the data. The validation dataset is subsequently used to evaluate the model’s 
performance on previously unseen instances, ensuring its generalizability. Typically, the dataset is 
partitioned such that approximately 70% to 80% is allocated to training, while the remaining 20% to 
30% is reserved for validation. 

4.6.7 Cross-Validation 
Cross-validation assesses a model’s generalizability, with k-fold cross-validation dividing the 

dataset into k subsets. The model is trained and evaluated k times, each using a different subset for 
validation, and performance metrics are averaged to reduce overfitting. In this study, Scikit-learn 
procedures were employed for implementation. 

4.6.8 Hyper parameter Tuning 
Hyper parameters are parameters established prior to training an ML model, such as the 

learning rate, regularization strength, or the number of neurons in a network. Two common 
strategies for hyper parameter optimization are Grid Search and Random Search. Random Search 
selects hyper parameters randomly from a specified distribution, which can be particularly efficient 
in high-dimensional hyper parameter spaces, as it does not require evaluating all possible 
combinations but samples a subset of candidate points. In contrast, Grid Search systematically fits 
and evaluates the model across all possible combinations of hyper parameters, using cross-
validation to identify the configuration that produces optimal performance. For both Grid Search 
and Random Search, Scikit-learn provides dedicated classes, GridSearchCV and Randomized Search 
CV, to facilitate implementation. 

 
5. Results and Discussion 

5.1 Model Training and Validation Results 
The following results provide a summary of the performance of various ML models, utilising data 

from three principal sources: IEA, Global Data, and the Bloomberg Terminal. Model performance is 
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evaluated using the metrics MAE, MSE, RMSE, and R². 

5.2 Linear Regression Results 
Linear Regression was utilised on the datasets to predict natural gas prices, with the resulting 

outputs presented in Figure 2 and Table 3.  

Table 3 
Linear Regression Performance Metrics  

Dataset Metric Training Set Validation Set 

IEA MAE 0.45 0.48  
MSE 0.29 0.33  
RMSE 0.54 0.57  
R2 0.85 0.82 

GlobalData MAE 0.43 0.47  
MSE 0.28 0.31  
RMSE 0.53 0.56  
R2 0.86 0.83 

Bloomberg Terminal MAE 0.42 0.45  
MSE 0.27 0.30  
RMSE 0.52 0.55  
R2 0.87 0.84 

 
Figure 2 provides a visual comparison of the predicted and actual natural gas prices, based on 

data obtained from the IEA, GlobalData, and the Bloomberg Terminal. 

 
Fig.2: Linear Regression Predicted vs Actual Prices 

5.3 Support Vector Machines Results 
SVM was implemented with a radial basis function (RBF) kernel. Table 4 presents the 

performance metrics (MAE, MSE, RMSE, R²) of the SVM model for both training and validation sets 
across the IEA, GlobalData, and Bloomberg Terminal datasets.  
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Table 4 
SVM Performance Metrics  

Dataset Metric Training Set Validation Set 

IEA MAE 0.38 0.42  
MSE 0.24 0.28  
RMSE 0.49 0.53  
R2 0.88 0.84 

GlobalData MAE 0.37 0.41  
MSE 0.23 0.27  
RMSE 0.48 0.52  
R2 0.89 0.85 

Bloomberg Terminal MAE 0.36 0.40  
MSE 0.22 0.26  
RMSE 0.47 0.51  
R2 0.90 0.86 

 
Figure 3 illustrates the comparison between predicted and actual natural gas prices generated 

by the SVM model using these data sources. 

 
Fig.3: SVM Predicted vs Actual Prices 

5.4 Decision Trees and Random Forests Results 
Decision Trees and Random Forests were utilised to model non-linear relationships within the 

data. Table 5 summarises the performance metrics (MAE, MSE, RMSE, R²) of the Decision Trees 
model for the training and validation sets across the IEA, GlobalData, and Bloomberg Terminal 
datasets.  

Table 5:  
Decision Trees Performance Metrics  

Dataset Metric Training Set Validation Set 

IEA MAE 0.40 0.45  
MSE 0.26 0.31  
RMSE 0.51 0.56 
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Dataset Metric Training Set Validation Set  
R2 0.86 0.83 

GlobalData MAE 0.39 0.44  
MSE 0.25 0.30  
RMSE 0.50 0.55  
R2 0.87 0.84 

Bloomberg Terminal MAE 0.38 0.43  
MSE 0.24 0.29  
RMSE 0.49 0.54  
R2 0.88 0.85 

 
Table 6 presents the corresponding performance metrics for the Random Forests model across 

the same datasets.  

Table 6 
Random Forests Performance Metrics  

Dataset Metric Training Set Validation Set 

IEA MAE 0.35 0.39  
MSE 0.22 0.26  
RMSE 0.47 0.51  
R2 0.89 0.85 

GlobalData MAE 0.34 0.38  
MSE 0.21 0.25  
RMSE 0.46 0.50  
R2 0.90 0.86 

Bloomberg Terminal MAE 0.33 0.37  
MSE 0.20 0.24  
RMSE 0.45 0.49  
R2 0.91 0.87 

Figure 4 depicts the comparison between predicted and actual prices for the Decision Trees 
model, while Figure 5 illustrates the predicted versus actual prices for the Random Forests model 
using data from the IEA, GlobalData, and the Bloomberg Terminal. 

 

Fig.4: Decision Trees Predicted vs Actual Prices 
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Fig.5: Random Forests Predicted vs Actual Prices 

5.5 Neural Networks Results 
Neural Networks, specifically multi-layer perceptron’s, were employed to model the datasets. 

Figure 6 illustrates the comparison between predicted and actual natural gas prices generated by 
the Neural Networks model, based on data from the IEA, GlobalData, and Bloomberg Terminal. 

 
Fig.6: Neural Networks Predicted vs Actual Prices 

Table 7 summarises the performance metrics (MAE, MSE, RMSE, R²) of the Neural Networks 
model for both training and validation sets across the IEA, GlobalData, and Bloomberg Terminal 
datasets.  
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Table 7 
Neural Networks Performance Metrics  

Dataset Metric Training Set Validation Set 

IEA MAE 0.32 0.37  
MSE 0.20 0.25  
RMSE 0.45 0.50  
R2 0.90 0.87 

GlobalData MAE 0.31 0.36  
MSE 0.19 0.24  
RMSE 0.44 0.49  
R2 0.91 0.88 

Bloomberg Terminal MAE 0.30 0.35  
MSE 0.18 0.23  
RMSE 0.42 0.48  
R2 0.92 0.89 

5.6 Proposed Ensemble Methods Results 
Ensemble methods, incorporating both boosting and bagging techniques, were utilised to 

enhance prediction accuracy. Figure 7 illustrates the comparison between predicted and actual 
natural gas prices generated by the Ensemble Methods model using these data sources. 

 
Fig.7: Proposed Ensemble Methods Predicted vs Actual Prices 

Table 8 summarises the performance metrics (MAE, MSE, RMSE, R²) of the proposed Ensemble 
Methods model for the training and validation sets across the IEA, GlobalData, and Bloomberg 
Terminal datasets.  
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Table 8 
Proposed Ensemble Methods Performance Metrics  

Dataset Metric Training Set Validation Set 

IEA MAE 0.30 0.34  
MSE 0.18 0.23  
RMSE 0.42 0.48  
R2 0.92 0.88 

GlobalData MAE 0.29 0.33  
MSE 0.17 0.22  
RMSE 0.41 0.47  
R2 0.93 0.89 

Bloomberg Terminal MAE 0.28 0.32  
MSE 0.16 0.21  
RMSE 0.40 0.46  
R2 0.94 0.90 

5.7 Comparative Analysis of Models 
A comparative evaluation of the ML models was conducted using IEA, GlobalData, and 

Bloomberg Terminal datasets. Table 9 presents the performance metrics (R², RMSE, MAE, MSE) for 
Linear Regression, SVM, Decision Trees, Random Forests, Neural Networks, and the proposed 
Ensemble Methods model across training and validation sets. The comparative analysis indicates 
that the Ensemble Methods and Neural Networks models achieve superior prediction performance 
relative to the other models, evidenced by lower error metrics and higher R² values across all 
datasets. SVM and Random Forests also demonstrated satisfactory performance, with 
comparatively low errors and high predictive accuracy.  

Table 9 
Comparison of Model Performance Metrics across Datasets  

Model Dataset MAE MSE RMSE 𝐑𝟐 

Linear Regression IEA 0.48 0.33 0.57 0.82  
GlobalData 0.47 0.31 0.56 0.83  
Bloomberg Terminal 0.45 0.30 0.55 0.84 

SVM IEA 0.42 0.28 0.53 0.84  
GlobalData 0.41 0.27 0.52 0.85  
Bloomberg Terminal 0.40 0.26 0.51 0.86 

Decision Trees IEA 0.45 0.31 0.56 0.83  
GlobalData 0.44 0.30 0.55 0.84  
Bloomberg Terminal 0.43 0.29 0.54 0.85 

Random Forests IEA 0.39 0.26 0.51 0.85  
GlobalData 0.38 0.25 0.50 0.86  
Bloomberg Terminal 0.37 0.24 0.49 0.87 

Neural Networks IEA 0.37 0.25 0.50 0.87  
GlobalData 0.36 0.24 0.49 0.88  
Bloomberg Terminal 0.35 0.23 0.48 0.89 

Proposed Ensemble Method IEA 0.34 0.23 0.48 0.88  
GlobalData 0.33 0.22 0.47 0.89  
Bloomberg Terminal 0.32 0.21 0.46 0.90 

 
Linear Regression, while simpler and suitable as an initial baseline model, exhibited higher error 

metrics and lower R² values compared to the more advanced models. Decision Trees, although 
capable of capturing non-linear relationships between variables, explained less variance and 
required longer to generalize relative to Random Forests and other ensemble approaches, 
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highlighting the advantage of combining multiple models for improved generalization and predictive 
reliability. A comparative summary of model performance across different datasets is presented in 
Figure 8. The comparison further underscores that Ensemble Methods and Neural Networks 
outperform the other models and are well-suited for forecasting natural gas prices using data from 
the IEA, GlobalData, and the Bloomberg Terminal. 

 
Fig.8: Comparison of Model Performance 

6. Conclusion and Future Work 
The results indicate that ML algorithms predicted natural gas prices with greater accuracy and 

reliability compared to traditional statistical models. Using data from GlobalData and the Bloomberg 
Terminal, these models effectively captured and represented the non-linear complexities inherent 
in natural gas pricing. Both Ensemble Methods and Neural Networks demonstrated superior 
predictive performance and computational efficiency. Among the ML techniques, Neural Networks 
achieved the lowest error metrics, with an MAE of 0.30, MSE of 0.18, RMSE of 0.42, and an R² of 
0.92 on the Bloomberg Terminal dataset. Ensemble Methods performed comparably, with an MAE 
of 0.28, MSE of 0.16, RMSE of 0.40, and an R² of 0.94. These algorithms successfully identified non-
linear patterns and intricate relationships in the data, delivering robust and highly relevant 
predictive forecasts under varying market conditions.  

The findings suggest that energy sector organizations can leverage ML models to enhance 
decision-making and achieve value-driven objectives. These models are particularly valuable for 
forecasting market trends, both historical and future, enabling more accurate and comprehensive 
predictions, including potential cost fluctuations. Future research will focus on integrating real-time 
data streams to further improve forecasting accuracy and efficiency. Such integration would allow 
models to dynamically adapt to evolving market conditions, providing timely and precise forecasts. 
Expanding forecasting models to incorporate macroeconomic variables and geopolitical factors 
could further enhance the ability to explain price fluctuations. However, global influences such as 
economic conditions, political stability, and government policies related to natural gas pricing were 
not included in the current models or analysis. Incorporating these factors in future research is 
expected to improve forecasting performance. Overall, the findings of this study provide a solid 
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foundation for developing increasingly accurate and comprehensive forecasting models, offering 
enhanced insights into the determinants of natural gas prices and supporting informed economic 
decision-making in the energy sector.  
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