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The railway network constitutes a vital component of public transportation in 
many countries, serving millions of passengers and transporting significant 
volumes of freight. Nevertheless, a persistent challenge within this system is 
the frequent occurrence of train delays, which arise from diverse causes and 
result in financial losses, passenger dissatisfaction, and diminished trust 
among users. Consequently, enhancing operational efficiency and minimising 
delays has become a central objective for transportation planners and 
policymakers. In addressing this issue, the present study applies machine 
learning algorithms (MLAs), specifically multilayer perceptron (MLP) neural 
networks and the adaptive neuro-fuzzy inference system (ANFIS), to predict 
potential defects in railway vehicles and improve maintenance and repair 
strategies within the Iranian railway network. The findings reveal that ANFIS 
achieves superior predictive accuracy. Building on this, a mathematical model 
in combination with the Particle Swarm Optimization (PSO) algorithm was 
developed to optimise train allocation across stations and generate schedules 
aimed at reducing delays. The employed algorithms proved to be highly 
effective for predictive maintenance and repair of railway vehicles, ultimately 
contributing to delay reduction within the railway system. 

 
1. Introduction 

Railway networks represent a fundamental pillar of national transportation, facilitating the 
movement of millions of passengers and substantial volumes of freight across the country each year. 
One of the primary challenges faced by this system is the frequent occurrence of train delays, which 
may arise from a variety of operational and technical factors. According to established schedules, a 
train delay occurs when a train fails to depart from its origin or arrive at its destination on time. Such 
delays can result from infrastructure failures, signalling and communication issues, mechanical faults 
in locomotives or rolling stock, accidents, and other related causes [33]. Delays in train operations are 
widespread and disruptive, often producing significant consequences. In addition to generating 
passenger dissatisfaction and reducing the confidence of freight customers, these delays have 
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broader socioeconomic implications. Enhancing operational efficiency and minimising delays 
continues to be a core goal for railway planners and administrators [18; 23].  

Historically, railway vehicle maintenance has relied on conventional procedures and 
predetermined schedules [3]. These traditional approaches, based on fixed intervals or reactive 
interventions, often prove suboptimal and can lead to service interruptions. The emergence of digital 
technologies has facilitated the application of machine learning (ML) techniques within the railway 
sector. Research has demonstrated that ML contributes effectively to predictive maintenance, 
helping to reduce mechanical failures and service disruptions [28]. By proactively addressing 
equipment faults, ML frameworks improve both reliability and cost efficiency. Algorithms commonly 
applied in this context include decision trees, artificial neural networks (ANNs), and support vector 
machines (SVMs). Among these, ANNs and SVMs have shown strong performance in forecasting 
maintenance requirements for railway applications [20]. These approaches are valued for their 
adaptability to dynamic conditions and their ability to maintain continuous train operations.  

Analyzing operational data to identify patterns and extract actionable insights plays a vital role in 
managerial decision-making. Conventional software typically supports routine monitoring, reporting, 
and short-term planning; however, valuable patterns often remain hidden within large datasets. Data 
mining has been recognised as an effective method for discovering these patterns. Once identified, 
these insights enable railway managers to reduce passenger train delays and enhance service quality 
[9]. For instance, clustering delays caused by vehicle failures allows classification into distinct 
categories. Examining these clusters helps to uncover relationships between delay types and 
underlying causes, thereby facilitating targeted interventions. Such measures improve passenger 
confidence and strengthen trust among freight and cargo customers. To sum up, it can be stated that 
using MLAs in the maintenance and repair of railway vehicles to reduce train delays is both highly 
significant and essential.  

The principal contributions are summarised as follows:  

• Reducing delays and improving services: Train delays diminish passenger satisfaction and the 
quality of freight services. The application of MLAs in maintenance enables more effective 
reduction of delays and improvement of service delivery.  

• Increasing productivity and lowering costs: MLAs support improved operational efficiency and 
cost reduction in locomotive maintenance. By identifying components requiring attention, MLAs 
increase the precision and effectiveness of repairs. Early detection of potential issues reduces 
reliance on manual inspection, shortens repair times, limits service interruptions, and enhances 
vehicle reliability.  

• Enhancing resource distribution and optimal planning: MLAs assist in prioritising vehicles for 
repair and allocating resources efficiently, improving overall railway performance and reducing 
delays.  

• Promoting prevention and prediction: Algorithms trained on operational and technical data can 
learn continuously, enhancing the ability to prevent and predict defects and avoid sudden 
disruptions.  
Previous studies support these applications. MLAs have been successfully used to predict 

maintenance requirements Bukhsh et al. [6], reviewed as effective in diagnosing and forecasting rail 
defects [10], applied in models for identifying rail defects and joints using acceleration data [22], and 
implemented in Greek railways where data mining and preventive maintenance improved strategic 
decision-making and resource allocation [34]. Collectively, these studies illustrate the value of ML in 
enhancing maintenance processes and reducing train delays.  

The present study objectives are as the following:  

• Prediction and Prevention of Faults: MLAs enable improved forecasting of vehicle defects and 
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facilitate timely maintenance interventions when progressive faults are detected.  

• Optimizing the Maintenance Planning: ML supports the scheduling of repairs at appropriate times 
and locations to prevent delays.  

• Enhancing Preventive Maintenance: By identifying recurrent failure patterns from operational 
data, MLAs facilitate preventive actions that reduce both the frequency and severity of faults.  

• Improving Failure Detection System Performance: ML improves the accuracy and speed of fault 
detection, thereby shortening repair durations and minimizing downtime.  

• Improving the Railway Network’s Performance: The integration of ML methods in maintenance 
elevates overall system performance and increases passenger satisfaction and confidence among 
freight stakeholders.  
The main study innovations are as follows:  

• Application of MLAs and technical data analysis to more accurately detect faults and component 
failures.  

• Optimized repair planning through analysis of vehicle performance data and environmental 
factors, such as weather, traffic, and travel schedules, ensuring timely interventions and 
minimizing unexpected disruptions.  

• Development of intelligent maintenance systems by training MLAs on vehicle performance 
records, prior repair history, and operational conditions, supporting scheduled inspections and 
repairs.  

• Prediction of component lifespans and replacement requirements using MLAs, enabling 
preventive maintenance and timely replacement of parts to reduce train delays.  
This article is structured as follows: Section 2 provides theoretical foundations and literature 

review. In Section 3, the proposed methodology is described. Results and discussions are given in 
Section 4. Eventually, the paper concludes in Section 5.  

 
2. Literature Review 

2.1 Theoretical Foundations 

2.1.1 Railway Vehicle Maintenance and Repairs 
The maintenance and repair of railway vehicles constitute a critical function essential for ensuring 

the safe and efficient operation of railway systems. Rail vehicles, including freight wagons, passenger 
carriages, locomotives, and associated equipment, form the core infrastructure responsible for 
transporting passengers and cargo globally. The significance of maintenance and repair activities in 
rail vehicles can be summarized as follows [17; 30]:  

• Keeping Safety and Building Trust: Ensuring the safety of passengers and freight is paramount in 
railway operations. Regular and timely maintenance prevents accidents caused by mechanical or 
technical failures, while simultaneously enhancing the confidence of passengers and cargo 
owners in the reliability of the railway system [11].  

• Reducing Delays and Enhancing Performance: Technical faults and component failures can lead 
to unforeseen train delays. Implementing predictive and routine maintenance allows for 
smoother operations, improved system performance, and the minimization of service 
interruptions.  

• Increasing Useful Life and Productivity: Proper and timely maintenance extends the operational 
lifespan of railway vehicles, reducing the need for early replacement of damaged parts and 
components. This contributes to higher productivity and profitability within the railway network.  

• Energy Efficiency and Pollutant Reduction: Well-maintained rail vehicles operate more efficiently, 
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optimizing fuel consumption. This not only lowers operational costs but also mitigates 
environmental pollution and improves air quality in areas surrounding railway tracks and stations.  

• Raising Customer Satisfaction: Systematic maintenance enhances reliability, leading to increased 
satisfaction among passengers and cargo owners. Sudden failures or unexpected delays can 
diminish customer trust and reduce confidence in the railway transport system.  
In summary, the maintenance and repair of railway vehicles are essential for ensuring operational 

safety, reliability, and customer trust, while also improving performance, reducing delays, prolonging 
vehicle lifespan, optimizing energy usage, and enhancing overall customer satisfaction. The adoption 
of machine learning approaches is particularly valuable in this context, as it supports the prediction 
of vehicle failures and optimizes maintenance and repair strategies to improve the performance of 
railway systems [31].  

2.1.2 Types of Common Failures in Rail Vehicles 
Over time and with continuous operation, railway vehicles are prone to developing faults and 

technical defects due to harsh operational conditions and diverse environmental factors. The impact 
of these failures on train performance varies according to the type of fault and its severity. Some of 
the common malfunctions in rail vehicles and their corresponding effects are outlined as follows [24; 
25]:  

• Failure of Passenger Train Wagon Equipment: Components such as doors, windows, coupling 
systems, wheel and axle assemblies, and control levers may experience wear and deterioration, 
leading to operational delays.  

• Failure of the Brake System: Malfunctions in the braking system present significant safety risks. 
Ineffective or broken brakes compromise the control of train speed, potentially causing delays 
and accidents.  

• Failure of the Electrical System and Joints: Defects in the electrical system or its connections can 
result in power outages, disrupting the operation of onboard electronic and electrical systems, 
and causing stoppages and travel delays.  

• Failure of the Air Conditioning System: During periods of high temperatures, malfunctions in 
cooling or ventilation systems can create substantial discomfort for passengers, affecting the 
quality of travel.  
Failure of the Engine and Power Transmission System: Failures in the engine or transmission 

system represent major causes of delays. Such defects may prevent the train from moving entirely or 
significantly slow its operation.  

Overall, these malfunctions contribute to train delays, reduced operating speed, interruptions in 
scheduled movement, increased operational costs, and diminished customer satisfaction. To mitigate 
these challenges, the implementation of ML techniques for fault detection and prediction offers a 
promising approach to enhancing operational performance and minimising train delays within the 
railway network.  

2.1.3 Predictive Maintenance and Repairs 
Maintenance and repair involve activities aimed at ensuring that equipment and system 

components operate correctly under all conditions. The primary objective of these activities is to 
preserve and improve the performance and reliability of rail vehicles. Several approaches are 
employed for maintaining and repairing railway vehicles, with the three principal methods 
summarised as follows [13; 15]:  

• Corrective Maintenance and Repairs: This approach entails performing maintenance only after a 
failure has occurred. While it represents the most straightforward and traditional method, it often 
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results in unexpected breakdowns, critical operational disruptions, and increased maintenance 
costs.  

• Preventive Maintenance (PvM) and Repairs: Preventive maintenance involves scheduling regular 
replacement or servicing of parts based on historical failure data and manufacturer 
recommendations. By calculating the Mean Time Between Failures (MTBF), maintenance teams 
can design proactive maintenance programmes to avert unexpected failures. Although this 
approach can reduce unplanned disruptions, it may incur additional costs and require 
consideration of the remaining useful life (RUL) of components.  

• Predictive Maintenance (PdM) and Repairs: Predictive maintenance relies on continuous 
monitoring of mechanical conditions and other operational parameters over time. By leveraging 
modern technologies, including sensors and data acquisition tools, real-time information from 
various equipment components can be analysed using MLAs and statistical models to anticipate 
potential failures. This approach significantly contributes to reducing train delays and minimising 
costs associated with unforeseen breakdowns.  

2.2 Deep Learning 
Deep learning is recognized as a specialized subfield within machine learning. Its primary objective 

is to develop intelligent computational systems capable of learning new concepts and providing 
solutions to specific problems in a manner analogous to human reasoning. This area represents a 
crucial component of data science, as it integrates statistical analysis and predictive modelling to 
address a variety of challenges. Through the application of deep learning techniques, data scientists 
can efficiently gather, process, and interpret large-scale datasets with increased speed and accuracy. 
Deep learning algorithms analyses diverse forms of input from the external environment, such as 
images, audio, and text, to identify underlying patterns that can be utilized for predictive purposes. 
To understand deep learning comprehensively, it is necessary to examine the architecture of its 
models. These models are composed of multiple layers, forming structures known as neural 
networks, which are inspired by the organization of the human brain. Biological neurons comprise 
elements such as dendrites, the nucleus, the cell body, the axon, and axon terminals. Neurons receive 
input signals from sensory organs—including sight, hearing, smell, and touch—through the dendrites. 
This information is then transmitted along the axon and communicated to the dendrites of 
subsequent neurons via synaptic terminals. Similarly, in neural networks, each layer receives input in 
the form of numerical vectors through numerous nodes, processes this information, and transmits 
the output to the next layer. The weights within the network function analogously to synapse in the 
human brain, representing the parameters that the network must learn. By adjusting these weights, 
the neural network determines the relative importance of each input in producing the final output 
[19].  

2.3 MLP Neural Network 
     The MLP neural network represents a type of machine learning model that utilises artificial 

neurons for information processing. It consists of multiple layers of neurons; each fully connected to 
the preceding and subsequent layers. Within the network, every neuron layer employs an activation 
function to transform the outputs received from the previous layer. MLP neural networks are 
versatile and can be applied to a wide array of tasks, including classification, regression, and data 
compression. Their widespread adoption is attributed to their substantial learning capability and their 
proficiency in modelling intricate patterns [29]. Figure 1 illustrates the structural configuration of a 
neural network.  
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Fig.1: MLP Neural Network Structure Consilvio et al. [13] 

An MLP network is typically composed of three principal layers:   

• Input Layer: This layer is responsible for receiving the input data attributes. The number of 
neurons within the input layer corresponds directly to the number of input features.  

• Hidden or Intermediate Layers: These layers commonly referred to as hidden layers, contain 
neurons that enable the network to learn complex patterns and relationships among features. 
The architecture allows flexibility in both the quantity and size of hidden layers, as they perform 
the primary computational functions of the network.  

• Output Layer: The output layer produces the network’s final predictions or classifications. The 
configuration of a neural network varies according to the specific problem it is designed to 
address. 

2.4 ANFIS 
ANFIS is a highly efficient machine learning approach that integrates the strengths of Artificial 

Neural Networks (ANN) and Fuzzy Logic (FL). This hybrid model is widely employed by researchers 
and engineers for tasks such as classification, regression, and control system design due to its robust 
performance [16]. A principal advantage of ANFIS lies in its capacity to address nonlinear and highly 
complex problems. Its adaptive learning mechanism allows the system to refine parameters in 
response to input data while detecting and predicting subtle patterns.  The architecture of ANFIS 
comprises five essential layers:  

• Input Layer: This layer receives raw data entering the system.  

• Fuzzy Layer: Fuzzy logic principles are applied, defining membership functions and establishing 
fuzzy rules.  

• Normalization Layer: Outputs from the fuzzy layer are weighted and normalized based on the 
input data.  

• Inference Layer: Fuzzy logic operators are applied to the normalized outputs to derive final 
inferences.  

• Output Layer: This layer generates the system’s final output.  
The ANFIS architecture effectively combines the benefits of neural networks and fuzzy systems. 

The trainability of neural networks is exploited through weighted connections, allowing the model to 
be trained using the error backpropagation algorithm. Simultaneously, the imprecise modelling 
capabilities of fuzzy systems are utilized, enhancing decision-making under uncertainty and improving 
predictive accuracy [5].  
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2.5 Review of Similar Studies 
Delay prediction in public transportation using neural networks has been investigated [32]. A rule-

based neural network system was developed to forecast delays in the public transportation system. 
By analyzing existing data and variables related to public transport, the neural networks were trained 
to predict future delays. A methodology for modelling train delays and their propagation across 
station networks using stochastic techniques was introduced [26]. This approach combined 
mathematical formulations with detailed simulations, capturing a wide range of delay scenarios in 
transit systems. Fuzzy Petri net (FPN) models have also been applied for estimating train delays [2]. 
These models are suitable for addressing the complexity and uncertainty inherent in transportation 
systems. Predictive maintenance for railway braking systems using data analytics has been applied 
[12]. Comprehensive datasets from train operations were analyzed with advanced analytical methods 
to identify patterns related to equipment failures and performance anomalies. This approach enabled 
early detection of critical failure indicators, allowing for more precise fault prediction. A risk-informed 
maintenance scheduling model tailored for railway systems was proposed using a rolling-horizon 
optimization technique [13]. The model dynamically updated maintenance plans through real-time 
sensor inputs and continuous monitoring of equipment conditions, enabling anticipation and 
mitigation of potential failures. Hybrid ANFIS models integrated with metaheuristic optimization 
algorithms have been developed to overcome performance limitations of standard ANFIS models [8].  

Passenger train delays in railway zones of the Islamic Republic of Iran were predicted using 
passenger train movement and weather data via machine learning algorithms [28]. Considering the 
effects of winter weather on train delays, incorporating weather data improves decision-making and 
preventive measures. Passenger train delay data from 2017 to 2021 and corresponding weather data 
from synoptic stations were analyzed, comprising 46,596 records. Independent variables included 
year, month, day of the month, day of the week, axis of movement, type of train, railway zone, 
maximum wind speed, minimum horizontal visibility, minimum temperature, maximum temperature, 
number of ground surface freezing reports, and 24-hour rain and snow precipitation. The CRISP-DM 
methodology was employed for implementing machine learning and data mining techniques. 
Prediction modelling was performed as a categorization task, with the dependent variable, delay, 
divided into timely and delayed categories. Supervised learning methods were used to predict the 
impact of weather factors on train delays. Cross-validation was applied to evaluate model accuracy. 
The results showed that winter weather factors over the five-year period had positive, negative, or 
neutral effects on train delays. Preventive measures were proposed to enhance adaptation to climatic 
challenges [27].  

 
3. Methodology  

The methodology of the present study focuses on assessing the potential to predict train delays 
arising from railway vehicle failures using a machine learning algorithm. The primary objective of this 
research is to examine and optimize the impact of predicting maintenance requirements of railway 
vehicles on operational performance and the prevention of train delays within the Iranian railway 
network. Previous literature has demonstrated that the application of machine learning algorithms 
in predictive maintenance can significantly enhance the efficiency and accuracy of forecasting 
operational disruptions [1; 21]. Consequently, this study aims to employ such techniques to evaluate 
the capability of predicting train delays caused by railway vehicle malfunctions and to optimize 
maintenance interventions to mitigate these delays within Iran's rail infrastructure. The machine 
learning algorithm functions by predicting faults in railway vehicles during their operation and 
determining the necessary maintenance actions to prevent failures. This process utilizes 
observational data, historical records of prior failures, operational experience, and preventive 
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maintenance guidelines relevant to the Iranian railway fleet. By analyzing this information, the 
algorithm identifies patterns that can be used to infer the probability of vehicle failure and to assess 
operational status.  

In the first stage, failure reports from railway vehicles collected during train operations across the 
Iranian railway network are processed using two approaches: the MLP neural network and the 
adaptive neuro-fuzzy inference system (ANFIS). These models are employed to detect initial failures 
and assess the likelihood of imminent service disruption. For instance, a classification output of 0 
indicates that no failure is expected in the next n days, whereas a classification output of 1 
corresponds to a predicted type-1 failure within the same period. By evaluating failure probabilities 
from both models and comparing their outcomes, the model yielding the highest predictive accuracy 
is selected. In the second stage, a mathematical model is formulated using the calculated failure 
probabilities. This model enables optimization of the expected delay by adjusting operational 
schedules accordingly. The sequence of these steps and the associated workflow are outlined in the 
subsequent sections.  

 
4. Data Sets 

In this section, the dataset derived from reports on passenger train wagon failures within the 
Iranian railway network during 2022 was utilized. The variables included in the analysis were treated 
as indicators of failure. 

4.1 Data Pre-Processing 
Data pre-processing represents a fundamental stage in machine learning–based modelling for 

predicting railway vehicle failures, as the integrity and quality of the input data directly influence the 
predictive performance of the model. This stage encompasses processes such as data cleaning, 
dimensionality reduction, and transformation to enhance the effectiveness and efficiency of the 
machine learning algorithm. To ensure robust analytical outcomes, datasets are conventionally 
divided into three distinct subsets: a 70% training set to enable the model to learn and identify 
patterns, a 15% testing set to evaluate model performance on previously unseen data, and a 15% 
validation set to assess generalizability and reduce the likelihood of overfitting. Adopting this 
structured data partitioning approach substantially enhances the accuracy, reliability, and robustness 
of predictive models [4].  

4.2 Selecting the Right Model for Railway Failure Prediction  
When predicting rail vehicle failures, the choice of an appropriate machine learning model is 

determined by several factors, including the nature of the problem, the quality and volume of 
available data, and computational requirements. Two particularly effective approaches are the MLP 
neural network for detailed classification of failures and the ANFIS for managing uncertain and 
complex datasets. ANFIS integrates fuzzy logic with artificial intelligence to handle real-world railway 
data that often involves multiple interacting factors such as operating conditions, maintenance 
quality, and the age of the vehicle [7; 14; 16; 35]. A key advantage of ANFIS is its ability to model these 
intricate relationships accurately while continuously adapting to new data, which is essential in 
dynamic railway environments. This adaptability is achieved through the application of the error 
backpropagation (BP) learning algorithm. Given that data on rail vehicle failures and maintenance 
activities are constantly evolving, ANFIS can adjust to these changes, maintaining the accuracy of 
predictions. Furthermore, the interpretability of ANFIS is enhanced by its fuzzy system component, 
which allows clear articulation of decision rules. In the context of rail transportation, this capability is 
vital for understanding the underlying causes of vehicle failures, thereby supporting improvements 
in maintenance and repair strategies.  
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4.3 Mathematical Model 
     Mathematical models are employed to allocate trains to stations with the aim of generating 

more precise and realistic passenger train schedules, while considering the probability of component 
and equipment failures. These models, supported by advanced mathematical and computational 
algorithms, are widely used in operational optimization and transport planning to simulate various 
scenarios, including potential breakdowns and consequent delays. This study proposes a 
mathematical framework designed to optimize train scheduling, with a particular focus on station 
arrival times. The model seeks to reduce operational delays by accurately calculating passenger train 
timings while incorporating the likelihood of mechanical faults. The ANFIS model is utilised to enhance 
scheduling precision across diverse operational conditions. This methodology allows for more reliable 
fault prediction, facilitating improved operational management and more accurate coordination of 
departure times. The ANFIS model incorporates the following input parameters:  

4.4 The Objective Function  

               min ∑ 𝑤𝑖(𝑐𝑖 − 𝑎𝑖
𝑁
𝑖=1 )                                                                                                           (1) 

The stated objective function aims to minimize the cumulative delay across the entire railway 
network, thereby optimizing both service performance and the scheduling of repair operations for 
trains operating between stations.  

4.5 Constraints  
The stop time of the train (at each station) 𝛾𝑖 cannot exceed the scheduled time τi. 
        𝛾𝑖 + 𝑦𝑖 ≤ 𝜏𝑖    ꓯ𝑖                                                                                                                           (2) 
     The constraint for train speed: 
               𝜎𝑖 ≤ 𝑠𝑝𝑒𝑒𝑑 𝑙𝑖𝑚𝑖𝑡    ꓯ𝑖                                                                                                         (3) 
  The constraint concerning time allocation for trains at a station: This condition ensures that each 

train is assigned an appropriate time slot at the station, preventing scheduling conflicts and 
maintaining a smooth flow of train operations within the time-space diagram.  

                  𝑢𝑗−𝑢𝑖 − 𝑝𝑖 − (𝜎𝑖𝑗 − 1). 𝑇 ≥ 0  

                     ꓯ 1 ≤ 𝑖 . 𝑗 ≤ 𝑁 . 𝑖 ≠ 𝑗                                                                                                      (4) 
The constraint concerning space allocation for trains at a station: This condition ensures that each 

train is assigned a specific track or platform at the station, preventing spatial conflicts and allowing 
for safe and efficient train movements within the railway network.  

           𝑣𝑗−𝑣𝑖 − 𝑠𝑖 − (𝛿𝑖𝑗 − 1). 𝑆 ≥ 0 .  

              ꓯ 1 ≤ 𝑖 . 𝑗 ≤ 𝑁 . 𝑖 ≠ 𝑗                                                                                                             (5) 
This constraint ensures that train allocations at each station are managed to avoid conflicts or 

overlaps in the time-space diagram, thereby maintaining safe and orderly train operations.  
                   𝜎𝑖𝑗−𝜎𝑗𝑖 + 𝛿𝑖𝑗 + 𝛿𝑗𝑖 ≥ 1 .  

                ꓯ 1 ≤ 𝑖 . 𝑗 ≤ 𝑁 . 𝑖 ≠ 𝑗                                                                                                           (6) 
This constraint ensures that each train is assigned to a station in a manner that prevents any 

overlap in the time-space diagram, thereby maintaining safe and conflict-free train movements.            
                  𝜎𝑖𝑗−𝜎𝑗𝑖 ≤ 1 .  

                  ꓯ 1 ≤ 𝑖 . 𝑗 ≤ 𝑁 . 𝑖 ≠ 𝑗                                                                                                          (7) 
This constraint ensures that trains are allocated to stations in a way that prevents any overlap on 

the time-space diagram, maintaining safe and orderly train operations. 
                 𝛿𝑖𝑗−𝛿𝑗𝑖 ≤ 1 .  

            ꓯ 1 ≤ 𝑖 . 𝑗 ≤ 𝑁 . 𝑖 ≠ 𝑗                                                                                                      (8) 
     The computational constraint for train post-repair departure from the station: This condition 
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ensures that trains can only depart after completing the necessary maintenance or repair activities, 
taking into account the time required for inspections and servicing, thereby preventing premature 
departures and potential operational conflicts.  
               𝑝𝑖−𝑢𝑖 = 𝑐𝑖 .  

           ꓯ 1 ≤ 𝑖 ≤ 𝑁 .                                                                                                                     (9) 
   The constraint for the time horizon of train planning: This condition defines the total planning 

period for train operations, ensuring that all scheduling, maintenance, and repair activities are 
confined within a specified timeframe to allow realistic and implementable train movement and delay 
optimization. 

            𝑎𝑖 ≤ 𝑢𝑖 ≤ 𝑇 .  
               ꓯ 1 ≤ 𝑖 ≤ 𝑁                                                                                                                  (10) 
The constraint for station capacity or available space: This condition ensures that the number of 

trains present at a station at any given time does not exceed the station’s physical capacity, 
preventing overcrowding and allowing safe and efficient train operations. 

           0 ≤ 𝑣𝑖 ≤ (𝑆 − 𝑠𝑖) 
              ꓯ 1 ≤ 𝑖 ≤ 𝑁                                                                                                                  (11) 
     The constraint for parameter range: This condition ensures that all model parameters, such as 

train speeds, repair times, or delay values, remain within predefined minimum and maximum limits, 
maintaining realistic and feasible outcomes for the optimization process.  

           𝑢𝑖 . 𝑣𝑖  𝜖 𝑅+ 
             ꓯ 1 ≤ 𝑖 ≤ 𝑁                                                                                                                   (12) 
The constraint for binary variables regarding the train time-space diagram: This condition ensures 

that binary decision variables, which indicate the presence or absence of trains at specific times and 
locations, take only values of 0 or 1. This guarantees a clear and unambiguous representation of train 
positions and movements within the time-space framework.  
           𝜎𝑖𝑗𝜖{0.1} . 𝛿𝑖𝑗𝜖{0.1} 

           ꓯ 1 ≤ 𝑖 . 𝑗 ≤ 𝑁 . 𝑖 ≠ 𝑗                                                                                                     (13) 
Where: 
𝑆: Longitudinal Distance between Two Train Stations 
𝑖: Number of Train  
𝑇: Length of the Scheduling Horizon 
𝑁: Total Number of Incoming Trains 
𝑝𝑖: Failure Repair Time of Train i 
𝑠𝑖: Size of Train i 
𝑎𝑖: Arrival Time of Train i 
wi: Weight Assigned to Train i 
𝑢𝑖: Repair Start Time for the Failure of Train i 
𝑣𝑖: Stop Position of Train i 
ci: Departure Time of Train i 
𝜎𝑖𝑗: If in Time-Space Diagram, Train i is Completely on the Left of Train j ,1, Otherwise 0 

𝛿𝑖𝑗: If in Time-Space Diagram, Train i is Completely Above Train j, 1, Otherwise 0 

In summary, this section outlines the methodology for optimizing train delays. The proposed 
approach integrates machine learning techniques for predictive maintenance of rail vehicles, 
employing a hybrid model that combines MLP neural networks and ANFIS methods. This architecture 
facilitates precise failure prediction using MATLAB 2021 software. Ultimately, the developed 
mathematical model aims to minimize train delays, serving as an instrument to optimize maintenance 
and repair operations and enhance overall railway network efficiency.  
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5. Results and Discussion  

5.1 Model Evaluation 
Considering the study goal to analyses the data regarding breakdowns of railway vehicles in train 

architecture within the Iran railway network, two algorithmic methods, i.e., MLP and ANFIS, were 
implemented. Initially, the probability of future breakdowns was predicted, and subsequently, using 
a mathematical model, the extent of breakdown-induced delays was optimized through an 
appropriate schedule. The major issues depicted in the train travel and movement data of the Iran 
railway network in 2022 indicate the types of railway vehicle failures in trains as: tampon defects, 
wheel and axle breaks, binding breakdown, bearing box heating, loosened wheel rim, power and 
ventilation system failure, brake system failure, and other factors representing certain unfavorable 
wagon operations.  

5.2 Multilayer Perceptron (MLP) Neural Network Architecture for Failure Prediction 
The model’s inputs consist of eight types of breakdowns for each train within a given time. These 

data are fed into the input layer of the network, where the number of neurons corresponds to the 
number of input attributes (eight failure variables). One or more hidden layers are included, with their 
number and the neurons within each layer determined through optimization of the network 
architecture. The output layer contains a single neuron, which predicts the probability of a future 
breakdown. Figure 2 illustrates the architecture of the MLP neural network. In this configuration, the 
model incorporates 8 input parameters, 5 neurons in the first hidden layer, 2 neurons in the second 
hidden layer, and a single output neuron representing the predicted train breakdown. The dataset 
was randomly divided into 70% for training and 30% for testing. The network was trained using the 
Levenberg-Marquardt (LM) algorithm, implemented as trainlm in MATLAB. Following 30 training 
iterations and subsequent testing, the estimation results were obtained. 

Figure 3 presents the correlation values of the data within the MLP neural network model for 
failure prediction.  

 
Fig.2: Architecture of MLP Network for Breakdown Prediction 

These correlation values reflect the degree of dependency between the variables. In this context, 
the figure shows the correlations between the MLP model’s input and output variables, highlighting 
both the strength and direction of their relationships. Such information is useful for assessing the 
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model’s predictive capability and provides insights into the relevance of different variables in 
predicting failures. 

Based on the analyses conducted, the results obtained from failure modelling and prediction using 
the MLP neural network are illustrated in the subsequent graphs. These include visual comparisons 
between the actual observed data and the model’s predicted values, thereby evaluating the accuracy 
and efficiency of the network. By illustrating the alignment between predicted and actual failure data, 
these graphs serve as a measure of the model’s overall predictive effectiveness.  

 
Fig.3: Data Correlation Values in MLP Neural Network Model for Failure Prediction 

Figure 4 illustrates the outcomes of the training phase of the MLP neural network for failure 
prediction. In this stage, the model learns and adapts to the patterns present in the training dataset. 
The figure provides visual outputs, such as charts or tables, that demonstrate the network’s dynamics 
and predictive accuracy. To evaluate the model’s performance during training, key metrics including 
Mean Squared Error (MSE), Mean Absolute Percentage Error (MAPE), and regression analysis are 
employed. These measures enable the assessment of how effectively the model captures failure 
trends and its reliability in predicting potential failures.  
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Fig.4: Assessing the Effectiveness of the MLP Neural Network Model During the Training Phase for Predicting 

Failures 

Figure 5 presents the evaluation of the MLP neural network during the testing phase for failure 
prediction. In this stage, the model is validated using previously unseen test data to determine its 
generalization capability. Performance is measured through indicators such as MSE, MAPE, and 
regression analysis, which serve to evaluate the accuracy and efficiency of the predictions. The 
findings provide valuable insights into the reliability of the model and its effectiveness in predicting 
failures under practical conditions. 

 
Fig.5: Assessing the Effectiveness of the MLP Neural Network Model during the Data Testing Phase for Predicting 

Failures 
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Figure 6 illustrates a comprehensive evaluation of the neural network’s capability to forecast 
failures when applied to the complete dataset. The analysis contrasts predicted outcomes with actual 
failure instances through both graphical and tabular presentations, thereby emphasizing the model’s 
accuracy and practical utility. This assessment aims to present a consolidated view of the model’s 
predictive behavior in identifying potential system breakdowns. To reinforce the findings, 
performance metrics were compiled in a table, focusing on MAPE and MSE. MAPE captures the 
average proportional deviation between predictions and observed values, providing a scale-
independent measure that facilitates performance comparison across different contexts. Conversely, 
MSE quantifies the mean squared deviation between estimated and actual results, serving as a widely 
recognized standard for numerical prediction accuracy. A lower MSE value signifies a stronger 
alignment between predictions and real outcomes, indicating superior model precision. Table 1 
presents the performance indicators of the MLP model in predicting failures during both the training 
and testing phases. The findings highlight the model’s predictive accuracy and reliability in identifying 
system breakdowns. Assessing its performance across distinct datasets further validates the model’s 
precision and its capacity to generalize effectively to previously unseen data. 

 
Fig. 6: Evaluating How the MLP Neural Network Performs in Predicting Failures When Trained and Tested on 

the Full Dataset 

Table 1  
Evaluation of MLP Neural Network Model for Failure Prediction 

Index /Value Training Stage Testing Stage 

MSE 10.3784 11.0678 
MAPE 0.3169 0.3352 
Regression 0.99963 0.99959 

5.3 Adaptive Neuro-Fuzzy Inference System (ANFIS) Model  
Figures 5–7 depict the performance progression of the ANFIS-based failure prediction model, 

highlighting the gradual enhancement in predictive accuracy across successive training iterations. The 
visual alignment of predicted outputs with actual failure occurrences underscores the model’s 
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increasing effectiveness in capturing real-world failure dynamics. Figure 7 illustrates the ANFIS 
model’s performance in forecasting system failures during the training phase. The depicted learning 
curves indicate the progressive refinement of prediction accuracy over successive training epochs, 
showing consistent convergence of the model’s outputs toward the observed failure data. This 
evaluation achieves two primary objectives: it quantifies the model’s practical predictive capability 
and assesses its operational efficiency in handling intricate failure patterns. 

 
Fig.7: Assessing the Effectiveness of the MLP Neural Network Model during the Training Phase for Predicting 

Failures 

Figure 8 presents the results of the ANFIS model during the testing phase for failure prediction. 
The side-by-side comparison between predicted values and observed data highlights the model’s 
capacity to manage previously unseen operational information. Additionally, these results facilitate 
the assessment of two critical performance aspects: first, the predictive reliability of the model in 
forecasting failures, and second, its efficiency in utilizing computational resources while processing 
real-time diagnostic scenarios. Figure 9 illustrates the overall performance evaluation of the ANFIS 
model in predicting system breakdowns using the entire dataset. A detailed summary of the results 
is provided in Table 2. Moreover, Table 2 presents the performance metrics of the ANFIS model, 
including MSE, MAPE, and regression values for both the training and testing datasets. The results 
indicate high predictive accuracy and effective computational performance in forecasting system 
breakdowns, demonstrating the model’s practical applicability for predictive maintenance 
operations. 

Table 2 
Evaluation of ANFIS Model for Failure Prediction 

Index /Value Training Stage Testing Stage 
MSE 4.9779× 10-26 505.7351 
MAPE 1.9518×10-14 1.6597 
Regression 1 0.9843 
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Fig.8: Assessing the Effectiveness of the MLP Neural Network Model during the Data Testing Phase for Predicting 

Failures 

 
Fig. 9. Evaluating How the MLP Neural Network Performs in Predicting Failures When trained and Tested on the 

Full Dataset 
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5.4 Comparing Two Models 
Table 3 provides a comparative overview of the MAPE values for the different models applied to 

failure prediction, highlighting their relative predictive accuracies. The analysis of the results clearly 
indicates that the application of the ANFIS model produced a considerable reduction in the MAPE for 
predicting rail vehicle failures. Consequently, the MAPE values derived from this model will be 
employed in the subsequent mathematical modelling to estimate the delay times associated with 
such failures. 

Table 3 
Comparing MAPE Values of the Models for Failure Prediction 

Model Testing Stage Related to MAPE 
MLP 0.3169 
ANFIS 1.9518×10-14 

5.5 Solving Mathematical Model for Predicting Delay Time 
This section presents an analysis of train delays caused by rail vehicle breakdowns within the 

Iranian railway network, with the findings illustrated as case-specific data. In conducting this review, 
certain standards were consistently applied, such as adopting a uniform wagon length of 20 meters. 
For temporal planning, a comprehensive time horizon of 24 hours per day over all twelve months of 
the year was considered. Additionally, Figure 10 illustrates the convergence pattern of the PSO 
algorithm for the period from 21 March to 19 April within this network. As illustrated in Figure 10, the 
PSO algorithm achieved convergence after approximately 40 iterations, yielding the final value of the 
fitness function, which corresponds to the average train delay under the specified problem 
conditions. In this context, the fitness function is formulated to quantitatively evaluate train delays, 
assigning a numerical score to each potential solution. This score represents the average delay 
incurred relative to an idealized train movement schedule. A lower fitness value signifies greater 
efficiency and effectiveness in mitigating train delays. Consequently, the PSO algorithm seeks to 
minimize this value by optimizing the candidate solutions. During the optimization process, PSO 
explores the search space, progressively selecting and applying solutions that achieve improved 
fitness values (i.e., lower delays). The algorithm updates solutions iteratively until the changes in 
fitness function values become negligible, indicating that additional improvements are minimal. This 
stage, referred to as convergence, marks the attainment of a near-optimal solution. The results of 
this study confirm that this methodology successfully reduces failure-induced delays, demonstrating 
strong predictive and optimization performance.  

 
Fig.10: Convergence Diagram of PSO Algorithm 
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6. Conclusion 
This study demonstrates that machine learning can fundamentally enhance railway maintenance 

by enabling predictive, data-driven strategies in place of traditional reactive repairs. Comparative 
analysis of MLP and ANFIS models revealed that ANFIS provides superior failure prediction, and its 
integration with Particle Swarm Optimization significantly improves scheduling efficiency, reducing 
unexpected delays and enhancing operational reliability. Implementing such ML-based approaches 
can deliver tangible benefits, including improved service consistency, lower maintenance costs, early 
fault detection, and more efficient resource utilization. The effectiveness of these systems relies on 
comprehensive historical datasets and adequate computational resources. Future research should 
explore real-time sensor integration, consider external influences such as weather and track 
conditions, and validate the approach across diverse railway networks. Overall, the findings highlight 
the potential of intelligent, predictive maintenance systems to create more resilient, efficient, and 
sustainable rail transport operations.  
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