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Industrial assembly settings have encountered novel challenges following the 
integration of collaborative robots (cobots), particularly in maintaining a 
balance between effective human-robot interaction and operational efficiency. 
Interpreting and implementing complex human behaviours remains a 
significant difficulty, especially in conventional operations conducted under 
dynamic and unpredictable conditions. A critical requirement has emerged for 
the development of intelligent interfaces capable of autonomously regulating 
systems while facilitating seamless collaboration between human operators 
and robotic agents. This study focuses on a multimodal perception approach 
enhanced by game-theoretic optimisation, which has been shown to improve 
cobots’ responsiveness and strategic flexibility. Researchers have chosen this 
method due to its capacity to model interactive behaviours in variable 
environments. By integrating vision, auditory, and tactile sensing technologies, 
cobots are equipped to accurately interpret human communicative cues, even 
when operating with limited capabilities. The proposed framework utilises 
game theory to model the strategic and dynamic interactions between humans 
and robots, thereby addressing the dual challenges of task allocation and 
decision-making. This system supports optimal coordination and prompt 
conflict resolution, while enabling real-time behavioural adjustments based on 
utility-driven outcomes. Its efficacy has been validated through both simulated 
and practical implementations in industrial assembly scenarios, confirming its 
potential to enhance collaborative efficiency and safety while maintaining 
adaptability. Overall, this research presents a strategic design framework for 
cobot interaction that emphasises perceptual processing, contributing to 
substantial advancements in the evolution of intelligent manufacturing 
systems. 

 
1. Introduction 

Contemporary industrial assembly processes have significantly advanced through the integration 
of cobots, marking a vital step forward in the evolution of intelligent manufacturing systems. Cobots 

 

* Corresponding author. 
E-mail address: 372468296@qq.com 

https://doi.org/10.31181/dmame7120241433 

 

Decision Making: Applications in 

Management and Engineering 

 
Journal homepage: www.dmame-journal.org  

ISSN: 2560-6018, eISSN: 2620-0104 

mailto:xupengcheng@njfu.edu.cn
mailto:372468296@qq.com
mailto:372468296@qq.com
https://doi.org/10.31181/dmame812025984
http://www.dmame-journal.org/


Decision Making: Applications in Management and Engineering 

Volume 7, Issue 1 (2024) 735-751 

736 

 
 

 

are specifically designed with integrated safety mechanisms that enable their operation in close 
proximity to human workers, fostering the emergence of shared workspaces [29]. This progression is 
largely driven by growing demands for greater production flexibility, responsiveness, and 
adaptability, particularly in response to trends such as mass customisation and frequent product 
redesigns [7]. While cobots contribute consistent precision and physical endurance, human operators 
remain essential for managing variability and addressing exceptions in these dynamic settings [16]. 
However, successful human-robot collaboration entails more than mere spatial coexistence; it 
requires the establishment of dependable interaction frameworks that support real-time 
communication, coordination, and mutual comprehension between human and robotic agents [12]. 
This requirement becomes especially critical in scenarios where even minor deviations in timing, 
perception, or intent may result in productivity loss or pose safety risks [23].  

A fundamental enabler of such sophisticated collaboration is multimodal perception—the robot’s 
capacity to interpret human actions and environmental cues through various sensory channels. These 
modalities include visual input, speech recognition, tactile and force feedback, and physiological 
indicators such as muscle activity and gaze direction [22]. Although each sensory input provides 
limited information individually, their integration yields a comprehensive, context-rich understanding 
of the environment [26]. For instance, a cobot equipped with computer vision and depth sensing 
technologies can identify the position and orientation of components, while responding to human 
gestures or verbal prompts to initiate cooperative actions [9]. Such non-intrusive, intuitive interaction 
reduces the cognitive burden on human operators and enhances the naturalness of collaboration 
[28]. Nevertheless, the fusion of heterogeneous sensor data presents significant technical challenges 
due to factors such as temporal misalignment, signal noise, ambiguity, and sensor reliability [10]. 
Furthermore, as human intentions are often probabilistic, cobots must be capable of reasoning under 
uncertainty and adapting to dynamic conditions in real time.  

To support such advanced collaboration beyond perceptual capabilities, it is imperative to 
establish strategic decision-making frameworks and operational protocols that dictate task allocation, 
resource sharing, and conflict resolution [30]. Traditional planning and control methodologies often 
prove inadequate in dynamic, multi-agent environments involving human participants [2]. Game 
theory offers a robust mathematical foundation for modelling interactions among rational agents 
with potentially cooperative or conflicting objectives [4]. Within the context of industrial assembly, 
game-theoretic models enable optimal task distribution, anticipation of human responses, and 
negotiation between competing goals such as speed and accuracy [21]. For example, in a Stackelberg 
game framework, the human acts as the leader and the cobot as the follower, allowing the robot’s 
strategy to adapt based on predicted human actions. Alternatively, cooperative game theory supports 
joint decision-making where both agents aim to maximise shared utility [15]. Integrating such models 
within the control architecture redefines the role of the cobot from a passive tool to an adaptive 
partner—one capable of negotiating roles, reallocating tasks dynamically, and aligning its operational 
strategy with the evolving goals of its human counterpart.  

This study proposes a comprehensive framework that combines multimodal perception with 
game-theoretic configuration to advance cobot interaction design in industrial assembly 
environments. By leveraging advanced sensory processing alongside strategic, model-based decision-
making, the framework enhances cobot autonomy, safety, and cooperative performance. The system 
undergoes validation through experimental trials and simulation-based assessments conducted in 
industrial facilities, with performance metrics including task completion time, workflow smoothness, 
and user satisfaction. The overarching aim of this research is to inform the design of next-generation 
collaborative robots that can emulate human-like capabilities, enabling them to perform precise 
assembly tasks in an intuitive and user-friendly manner.  
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2. Related Works 

To develop a suitable interaction framework for collaborative robots within industrial assembly 
settings, existing research in relevant domains has been systematically reviewed. These investigations 
primarily concentrate on multimodal perception technologies, human-robot interaction (HRI) design, 
and game-theoretic optimisation approaches. The exploration of perception techniques includes the 
utilisation of computer vision, speech recognition, force sensing, and more recent advancements such 
as deep learning-based sensor fusion and probabilistic modelling methods [19]. These approaches 
aim to enhance the robot’s capacity to interpret human behaviour and environmental cues more 
accurately.  

In parallel, numerous studies address the challenges of task distribution, conflict mitigation, and 
strategy formulation through the application of game-theoretical models. These models encompass 
cooperative and non-cooperative games as well as Stackelberg-type formulations to support dynamic 
and strategic interaction within collaborative settings [5]. While each contribution provides valuable 
insights, limitations persist. These include computational inefficiencies, limited adaptability to real-
time operational contexts, and reduced robustness when processing noisy or ambiguous data [18]. 
To encapsulate these findings, Table 1 presents a comparative summary of the reviewed studies, 
highlighting the strengths of the respective methodologies alongside identified areas that warrant 
further enhancement.  

Table 1 
Problem Formulation 

Author(s) Techniques Involved Advantages Disadvantages 

Wang and Jiao [27] Non-Cooperative Game Theory, 
Bi-Level Optimization 

Efficient for Competitive Task 
Allocation, Robust in Dynamic 
Environments 

High Computational Complexity, 
Limited Real-Time Adaptability 

Zhang et al. [32] Collaboration Effectiveness, 
Complex Operations Allocation 

Optimizes Collaboration,  
Considers Human Limitations 

Simplifies Real-World Dynamics, 
Scalability Issues 

Zeng et al. [31] Task Allocation, Scheduling, 
Efficiency and Fatigue 
Optimization 

Balances Efficiency and Fatigue, 
Boosts Productivity 

Difficulty in Real-Time 
Adaptation, Human Fatigue 
Modelling Challenges 

Cai et al. [3] Task Matching, Ergonomics, 
Hybrid Assembly Cell 

Integrates Ergonomics, Enhances 
Safety and Productivity 

Complex Ergonomic Design, 
Limited to Non-Specialized Tasks 

Alessio et al. [1] Multicriteria Task Classification, 
Fuzzy Inference 

Flexible, Handles Uncertainty  
Well 

Can be Imprecise, 
Computationally Intensive 

 
Wang and Jiao [27] present a cognitively intelligent framework for task allocation within human-

automation collaboration, employing non-cooperative game theory in conjunction with bi-level 
optimisation. Their model captures agent interactions in competitive settings and yields optimal task 
distribution strategies that demonstrate resilience in dynamic industrial contexts. Nonetheless, the 
computational intensity of their method hinders its real-time responsiveness, thereby limiting its 
viability in high-speed assembly operations. Zhang et al. [32] propose a collaboration-oriented task 
allocation strategy aimed at aligning robotic capabilities with human cognitive and physical 
thresholds. This approach facilitates coordinated task execution by incorporating human-centred 
considerations. However, despite enhancing coordination and task performance, the strategy 
oversimplifies real-world dynamics and exhibits scalability limitations when extended to more 
complex or larger systems.  

Zeng et al. [31] advance a task scheduling and allocation model that accounts for human 
productivity and fatigue, seeking to optimise collaboration through balanced workload distribution. 
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Their system enhances productivity while mitigating operator fatigue. Yet, its practical effectiveness 
is constrained by modelling inconsistencies in fatigue representation and a limited capacity for real-
time adaptation, particularly under unanticipated operational conditions. Cai et al. [3] examine task 
alignment and ergonomic integration within human-robot hybrid assembly environments. Their 
approach aims to promote operator comfort, reduce work-related injuries, and boost group 
productivity through ergonomic task design. While effective in structured scenarios, this integration 
demonstrates limited applicability to complex ergonomic settings and tasks requiring extensive 
customisation or non-specialised group handling. Alessio et al. [1] introduce a fuzzy inference-based 
system for classifying tasks in collaborative assembly settings involving human-robot interaction. 
Their framework addresses uncertainty and ambiguity in task definitions by providing a flexible 
decision-making mechanism. However, dependence on fuzzy logic introduces potential drawbacks: 
imprecise outcomes and high computational demands in large-scale decision environments can limit 
its practicality, particularly for real-time applications.  

Despite the notable advancements reported in these studies, several persistent limitations 
remain—chief among them high computational demands, insufficient real-time adaptability, 
simplistic modelling assumptions, and limited success in handling uncertainty. Most existing 
frameworks struggle to support dynamic task allocation and real-time decision-making while 
maintaining ergonomic integrity and operational efficiency. Furthermore, these approaches rarely 
integrate multimodal perception with game-theoretic optimisation in a cohesive manner, resulting in 
reduced adaptability in complex, evolving collaborative contexts. To address these shortcomings, the 
proposed framework integrates robust multimodal sensory data with adaptive game-theoretic 
models. This combined approach is designed to enhance system flexibility, responsiveness, and 
context-awareness. It enables dynamic task redistribution, strategic optimisation of collaboration, 
and ergonomically sound interaction, all with minimal computational overhead. The overarching aim 
is to construct a scalable, adaptive, and robust solution that enhances the synergistic interaction 
between humans and robots in industrial assembly operations.  

 
3. Proposed System Model 

The collaborative robot interaction framework was developed through the integration of distinct 
modules, each aligned with the system’s key functional layers: perception, decision-making, and 
execution. Central to this architecture is the Multimodal Perception Layer, which processes real-time 
inputs derived from a variety of sensor sources, including visual (camera), auditory (microphone), and 
tactile modalities. These heterogeneous data streams are processed by a Sensor Fusion Engine 
responsible for temporal alignment and interpretive synthesis, enabling accurate comprehension of 
both human operator’s behaviour and the surrounding environment. The consolidated sensory data 
are subsequently transmitted to the Human Intention Recognition Unit. This unit applies machine 
learning algorithms to infer the operator’s intentions and to extract relevant contextual information 
critically to effective task coordination. The overall structure of the proposed system architecture is 
illustrated in Figure 1.  
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Fig.1: System Architecture 

Building upon the established framework, an additional module—the Game-Theoretic Decision 
Engine—has been integrated to enhance adaptability and strategic collaboration. Within this system, 
both human and robotic agents are modelled as rational participants in a game-theoretic 
construction. To effectively manage potential conflicts, the engine evaluates a range of possible 
actions by estimating associated utility values, subsequently determining optimal strategies using 
equilibrium-based methodologies such as Nash or Stackelberg equilibria. The resulting decisions are 
then relayed to the System Configuration Optimiser, which dynamically adjusts robot-specific 
parameters including task prioritisation, motion planning, and interaction timing, in accordance with 
real-time system constraints and perceptual inputs. Supported by continuous interaction with the 
perception layer, the Task Execution Module implements the selected strategies, learning and 
refining its performance during operation. To foster transparency, trust, and cooperative 
engagement, visual and auditory feedback is provided to the operator via the HMI. The proposed 
architecture thereby facilitates adaptive human–robot collaboration, ensuring elevated levels of 
operational safety, flexibility, and efficiency in evolving industrial assembly settings.  

3.1 Step 1: Multimodal Perception Layer 
The Multimodal Perception Layer is responsible for acquiring environmental and interactional 

data through an array of heterogeneous sensors, including visual, auditory, and tactile modalities. 
These sensors enable the robot to interpret various elements of its operational environment. Visual 
sensors (such as cameras) provide still images or continuous video streams, auditory sensors capture 
acoustic signals and human speech patterns, and tactile sensors detect physical contact as well as 
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spatial proximity. By processing these diverse sensory inputs, the robot is able to construct a cohesive 
and enriched understanding of its surroundings. The fusion of data from multiple sources significantly 
increases system robustness, as the individual strengths of each sensor type serve to mitigate the 
limitations of the others. This data integration is achieved via a mathematical approach involving a 
weighted summation model, as described in equation (1), which ensures the generation of a unified 
perceptual representation.  

𝐷𝑓𝑢𝑠𝑒𝑑 = 𝑊1𝐷𝑣𝑖𝑠𝑖𝑜𝑛 +𝑊2𝐷𝑎𝑢𝑑𝑖𝑜 +𝑊3𝐷𝑡𝑎𝑐𝑡𝑖𝑙𝑒 (1) 

Here, 𝑊1,𝑊2,𝑊3 is defined as the weights assigned to every sensor, 𝐷𝑡𝑎𝑐𝑡𝑖𝑙𝑒, 𝐷𝑎𝑢𝑑𝑖𝑜 and 𝐷𝑣𝑖𝑠𝑖𝑜𝑛 
are defined as the tactile, audio and vision sensors depending on their relevance to the task at hand. 
The integrated sensory data provides a foundational input for the robot’s interpretation of human 
behaviour, enabling it to modify its actions accordingly (Salehzadeh, Gong, & Jalili, 2022).  

3.2 Step 2: Human Intention Recognition 
The recognition of human intentions by robots is enabled through the analysis of data derived 

from sensor fusion processes. This capability is essential in collaborative robotics, as it allows robots 
to anticipate operator actions and align their responses accordingly. Machine learning, particularly 
supervised learning techniques and neural networks, underpins this functionality by identifying 
recurring patterns linked to human motions [6]. Following the fusion of sensory data, the robot 
applies trained algorithms to interpret operator gestures and movements, such as directional shifts 
or gesture towards objects, which may signify intentions to grasp, pause, or initiate alternate tasks. 
These models are trained on annotated datasets of human behaviours to improve their interpretative 
accuracy over time. During operation, the robot evaluates the likelihood of specific human intentions 
based on real-time input, allowing it to adjust its actions strategically. This predictive capability 
enables robots to operate in synchrony with human collaborators, thereby facilitating seamless and 
responsive joint task execution. The prescient interpretation of human intent forms a crucial 
foundation for effective and adaptive human–robot teamwork [11].  

3.3 Step 3: Game-Theoretic Decision Engine 
Decision-making in collaborative robotic systems is governed by the Game-Theoretic Decision 

Engine, which models both the robot and the human as rational agents seeking to optimise their 
respective utilities. Within this interactive framework, each agent’s decisions directly influence the 
outcomes experienced by the other, thereby establishing a dynamic interdependence. Game theory 
provides an effective means of capturing such interactions, as it accounts for the mutual awareness 
each agent possesses regarding the other’s objectives and behaviours. For example, upon recognising 
a human operator’s intent to manipulate an object, the robot may elect to reposition itself to allow 
the human to complete the task safely. Conversely, humans may adapt their trajectories to avoid the 
robot’s operational path. Through continuous feedback and evaluation, the decision engine 
dynamically reconfigures task strategies to enhance the utility of both participants. This iterative 
process not only mitigates potential conflicts but also supports the mutual adjustment of actions, 
fostering seamless coordination. The result is a cooperative working environment in which both 
entities operate with minimal disruption and enhanced efficiency [34].  

3.4 Step 4: System Configuration Optimization 
Upon determining the optimal strategies, the robot advances to system configuration 

optimisation through the game-theoretic engine. This process involves analysing internal parameters 
such as velocity, trajectory, and energy consumption to enhance execution performance. Adjusting 
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these parameters provides an effective means of balancing task demands, including performance, 
safety, and operational efficiency [8]. For example, the robot may reduce its speed in confined spaces 
to minimise collision risks, even if this results in slightly longer task completion times. The 
optimisation framework also considers the physical limitations of the robot’s components, such as 
motor capacity, battery life, and maximum allowable operating speed. To satisfy essential 
performance criteria—such as task duration and energy efficiency—the robot must maintain 
operation costs within acceptable limits [33]. Through this phase, the system achieves optimal 
operational performance and safety during task execution, thereby supporting the handling of 
complex operations while preserving the robot’s longevity and safety standards [24]. This adaptability 
enables the robot to adjust its parameters online in response to varying environmental conditions, 
ensuring optimal functionality across diverse operational settings.  

3.5 Step 5: Task Execution and Feedback Loop 
Within the Task Execution and Feedback Loop, the robot carries out assigned tasks while 

dynamically adapting its behaviour to changes in the environment, human operator movements, and 
evolving operational requirements. It utilises optimised parameters and strategies during task 
performance, guided by real-time sensory feedback from visual, auditory, and tactile inputs to 
regulate its actions in response to environmental stimuli. Via the Game-Theoretic Decision Engine, 
the robot effectively engages with human operators, enabling it to adjust its activities according to 
their movements and intentions, thereby enhancing work efficiency and preventing conflicts. 
Continuous learning throughout task execution allows the robot to improve its functional capabilities 
by autonomously adapting to unforeseen circumstances and refining its strategies [14]. Through the 
Human–Machine Interface (HMI), operators receive system status updates and retain control access, 
permitting them to intervene during delays or system malfunctions. This ongoing feedback 
mechanism fosters operational excellence and heightens safety by ensuring effective collaboration 
between humans and robots throughout task completion [25].  

3.6 Step 6: Human-Machine Interface (HMI) 
In the final stage of the process, a user-friendly HMI is implemented to assist the operator in 

monitoring the robot’s activities and making operational decisions [13]. The system delivers real-time 
updates on the robot’s functionality, current task status, and any issues arising during task execution 
through the HMI. This platform features a graphical user interface that presents the robot’s ongoing 
task progress, such as advancement towards objectives, completion of assigned operations, and 
requests to modify the task status [17]. Important alerts are conveyed to human operators via audio 
signals alongside visual cues when delays or sensor malfunctions occur. The HMI allows the operator 
to modify the robot’s operation modes and parameters to ensure smooth task execution. Human–
robot interaction is characterised by seamless connectivity, enabling the operator to intervene and 
control robot actions during critical moments. This component empowers the human operator to 
maintain control throughout the collaboration and task performance, establishing a direct 
communication channel that enhances the efficiency and effectiveness of joint human–robot 
operations [20].  

 
4. Theoretical Framework 

The game-theoretical models employed in this research are essential for managing the intricate 
strategic interactions between human operators and collaborative robots within smart 
manufacturing settings. These models offer a rigorous mathematical basis to represent dynamic 
decision-making, allowing cobots to optimise task distribution and adapt responsively to human 
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behaviours. When integrated with multimodal perception, which encompasses visual, auditory, and 
tactile sensory inputs, the game-theoretic framework enhances the accurate recognition and 
interpretation of human communication signals, thereby improving real-time collaboration. This 
methodology supports maximising cooperative gains and resolving conflicts efficiently through the 
continuous adjustment of strategies informed by utility functions. As a result, embedding game 
theory within the multimodal interaction architecture fosters improved responsiveness, operational 
effectiveness, and safety in industrial assembly processes, substantiating its role as the primary 
analytical tool in this study.  

 
5. Performance Evaluation 

This section validates the integration of multimodal perception with game-theoretic optimisation 
by evaluating their performance in both simulated environments and real industrial assembly 
scenarios. The proposed approach was assessed against conventional methods with respect to safety 
performance and adaptability in task execution. Simulation results demonstrated that the proposed 
method achieved faster task completion times while reducing safety incidents compared to baseline 
systems. Enhanced human–robot interaction was facilitated by the fusion of visual, auditory, and 
tactile sensors, enabling more accurate interpretation of human intentions. The game-theoretic 
optimisation model further supported real-time decision-making, optimising the environment’s 
adaptability in managing conflict resolution and task allocation under dynamic conditions. Testing in 
actual industrial settings confirmed that the proposed method surpassed traditional approaches by 
delivering improved collaboration effectiveness and operational flexibility. Overall, the findings 
indicate that the system substantially enhances human–robot interaction, outperforming existing 
techniques. Table 2 presents the principal simulation parameters employed to evaluate the method’s 
performance.  

Table 2 
Simulation Parameters used for evaluating the Proposed Hybrid Cloud Resource Allocation Framework 

Parameter Value / Description 

Simulation Environment MATLAB R2023b / Python 3.10 
Total Simulation Time 60 Minutes Per Run 
Time Step Interval 1 Minute 
Number of Agents 10 (5 Robots, 5 Humans) 
Task Levels 10 (Level 1 to Level 10) 
Iterations 10 Per Task Level 
Performance Metric Efficiency, Task Completion Rate, Processing Time Share 
Resource Allocation Type Dynamic (Based on Task and Capabilities) 
Robot Processing Speed 2x Human Average 
Human Flexibility Index 0.8 
Collaboration Mode Parallel & Sequential Strategies 
Evaluation Criteria Completion Time, Accuracy, Utilization Efficiency 

 
Figure 2 illustrates the efficiency of human and robotic assembly work within industrial 

production, specifically analysing task allocation methods employed in human–robot collaboration. 
The robotic system requires 2 units of time to complete Task 1, whereas human workers need 3 units 
to achieve a comparable level of performance. Conversely, for Task 2, the situation is reversed: robots 
incur a cost of 4 units while human labour requires only 2 units to complete the task.  
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Fig.2: Cost Analysis 

These variations in task performance efficiency across different task types underscore the 
importance of tailored task allocation strategies. The research aims to enhance collaborative robot 
(cobot) adaptability through the application of game-theoretic optimisation supported by multimodal 
perception. Real-time task allocation is facilitated by the proposed system, which utilises dynamic 
game models processing data from visual, auditory, and tactile sensors. Such intelligent frameworks 
are critical, as static or fixed decision-making approaches frequently lead to suboptimal resource 
utilisation and diminished efficiency, as evidenced by the data presented. This study contributes to 
the advancement of next-generation manufacturing by developing intelligent, perception-driven 
cobot systems. The corresponding heatmap is displayed in Figure 3.  

 
Fig.3: Heatmap Analysis 

Figure 4 depicts the progressive enhancement of process efficiency across successive iterations 
of the system, primarily attributable to learning, optimisation, and training within the robotic or 
collaborative framework. The chart’s axes represent iteration numbers, ranging from 1 to 10, 
alongside efficiency values between 0.85 and 0.98. The blue line, marked with circular points, 
illustrates an upward trend in efficiency over time, identified in the legend as "Efficiency 
Improvement." During the initial five iterations, the system demonstrates a rapid increase in 
efficiency, indicating significant adaptation and learning during this pivotal development phase. From 
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iteration six onwards, the system exhibits a typical optimisation curve characterised by more gradual, 
incremental improvements. This pattern suggests that the foundational algorithm progressively 
refines system performance with repeated executions until it attains an optimal operational level.  

 
Fig.4: Efficiency Validation  

Figure 5, accompanied by a trendline, reveals the relationship between task complexity and 
efficiency. As task complexity increases from 1 to 10, efficiency declines, demonstrated by the 
consistently downward-sloping red dashed trendline. Efficiency measurements at various complexity 
levels are represented by green data points, which align closely with the linear trend. This data 
highlights a strong negative correlation between the complexity of tasks and efficiency outcomes, 
indicating that greater task complexity corresponds to lower efficiency. This depiction underscores 
the challenge of maintaining optimal performance amid increasing task demands and emphasises the 
necessity for strategic enhancements and robotic support to effectively manage such complexity.  

 
Fig.5: Task Complexity 

Figure 6 presents robot performance percentages across task complexity levels from 1 to 10. Each 
box plot illustrates the distribution of performance outcomes at each complexity level, with the red 
line representing the median, the blue box indicating the interquartile range (IQR), and whiskers 
extending to encompass the full data range, excluding outliers marked as individual circles. At lower 
complexity levels (1–3), median robot performance ranges between 70% and 73%, accompanied by 
a relatively widespread and several notable outliers, particularly at levels 1 and 3, where performance 
dips to as low as 53% and 54%, respectively. This variability suggests fluctuations in robot behaviour 
on simpler tasks, potentially due to over-adaptation or limited engagement. Between levels 4 and 6, 
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the median remains relatively stable (73–75%), while the performance range narrows, indicating 
increased consistency. Although outliers persist, especially at level 6, the narrowing IQR points to 
improved reliability. At higher complexity levels (7–10), robot performance demonstrates a clear 
upward trajectory, with median values rising steadily from 77% to 81%. The upper whiskers exceed 
90% at level 10, and the overall box positions rise accordingly. This trend implies that robots adapt 
more effectively to complex tasks, potentially due to greater task structure or optimised learning 
strategies. In summary, robot performance exhibits greater variability and inconsistency at lower 
complexity levels but becomes more reliable and reaches peak efficiency as task complexity 
increases. Such adaptive learning and optimisation capabilities suggest that future robotic systems 
may surpass human performance and excel within demanding industrial environments.  

 
Fig.6: Robot Performance 

Figure 7 compares the efficiency of human workers, robots, and human-robot collaborative 
systems across varying levels of task complexity, from level 1 to level 10. Efficiency, expressed as a 
percentage, is plotted on the y-axis, while task complexity increases along the x-axis. At the lowest 
complexity level (1), all three systems—human, robot, and collaborative—operate at near-maximum 
efficiency, close to 100%, with collaborative performance marginally lower than that of humans and 
robots. As task complexity rises, efficiency declines steadily for both humans and robots. By 
complexity level 5, human efficiency is approximately 85%, robot efficiency nearly 82%, whereas 
collaborative systems maintain a superior efficiency of around 89%. This advantage becomes more 
pronounced with increasing complexity. At level 8, human efficiency decreases to roughly 70%, robot 
efficiency falls just below 68%, while the collaborative system continues to outperform both, with an 
efficiency near 75%. At the highest complexity level (10), human and robot efficiencies drop to 
approximately 60% and 62%, respectively, whereas collaborative performance remains relatively 
robust at about 65%. These findings clearly demonstrate that while individual human and robotic 
performance diminishes as tasks become more complex, collaborative human-robot systems 
consistently exhibit higher efficiency. This evidence underscores the value and adaptability of 
collaborative strategies in managing complexity within industrial settings, serving as a crucial factor 
in sustaining operational productivity in human-robot teamwork.  
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Fig.7: Task Complexity 

Figure 8 presents a comparison of task completion rates between humans and robots over a 60-
minute period within an industrial assembly setting. Both humans and robots begin with a 0% 
completion rate at time zero. After 10 minutes, humans reach approximately 10% of task completion, 
whereas robots achieve only 5%. At the 20-minute mark, human performance increases to 30%, 
outperforming the robots, which stand at 20%. This trend continues at 30 minutes, with humans 
having completed 50% of the task, while robots have reached 40%. By 40 minutes, human completion 
rises to 70%, whereas robots lag at around 60%. At 50 minutes, humans approach 85% completion, 
closely followed by robots at 80%. Ultimately, both humans and robots attain 100% task completion 
by the end of the 60-minute interval. The data indicates that although humans initially progress faster, 
the completion rates of robots converge over time. This diminishing gap suggests that robots improve 
in efficiency and adaptability during prolonged tasks, demonstrating that robot performance can 
approximate human levels in extended operations. These findings advocate for leveraging the 
combination of robotic consistency and human intuition to optimise performance in collaborative 
industrial environments.  

 
Fig.8: Task Completion Rate 

Figure 9 depicts the time contributions of humans and robots, measured in minutes, across four 
industrial assembly tasks. In Task 1, humans dedicated 10 minutes while robots contributed 5 
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minutes, resulting in a total duration of 15 minutes. For Task 2, the workload increased, with humans 
working for 15 minutes and robots for 10 minutes, summing to 25 minutes overall. The task with the 
greatest human involvement required 25 minutes, alongside 20 minutes of robotic participation, 
amounting to 45 minutes in total. Similarly, Task 4 lasted 45 minutes; however, the distribution 
differed, with robots accounting for 25 minutes (more than half of the total time) and humans 
contributing 20 minutes. This progressive variation demonstrates how task complexity and the nature 
of collaboration lead to a division of labour, whereby robots assume a greater share of responsibility 
for executing more complex tasks within advanced human-robot cooperative frameworks.  

 
Fig.9: Processing Time 

6. Discussion 
The experimental findings offer a thorough assessment of the proposed framework’s strengths 

and limitations in comparison to conventional systems. As illustrated in Figure 4, the system achieved 
a 15% increase in efficiency from iteration 1 to 10, rising from 0.85 to 0.98, which clearly 
demonstrates effective adaptation and optimisation over time. Moreover, Figure 7 reveals that 
collaborative systems consistently maintained an efficiency advantage of 5 to 8% above both 
standalone human and robotic systems across all levels of task complexity. At the highest complexity 
level (level 10), collaborative efficiency remained at 65%, compared to 60% for humans and 62% for 
robots, underscoring the tangible benefits of synergistic collaboration. Insights from Figure 6 show 
notable variance in robot performance; at lower complexity levels (1–3), median performance ranged 
between 70% and 73% but exhibited considerable fluctuation and low outliers (down to 53%), 
suggesting potential over-adaptation or insufficient task challenge. In contrast, performance at higher 
complexity levels (7–10) improved steadily, with median values reaching 81% alongside reduced 
variability, indicating enhanced robot engagement and learning when confronted with more 
demanding tasks.  

Figure 8 further confirms that although robots initially complete tasks more slowly than humans, 
they attain parity with a 100% completion rate within 60 minutes, emphasising their sustained 
efficiency and adaptability over longer durations. Correspondingly, workload distribution analysis 
(Figure 9) indicates a progressive shift, whereby Task 5 robots undertake over 55% of the total task 
time, reflecting their growing proficiency in complex operations. Collectively, these results 
substantiate the system’s capacity for dynamic task allocation, conflict resolution, and adaptation to 
operational fluctuations via real-time, utility-based decision-making.  

These outcomes suggest that integrating multimodal perception with game-theoretic decision 
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frameworks in collaborative robots significantly boosts productivity, particularly in complex and 
variable industrial contexts. This approach facilitates more strategic and flexible human–robot 
interaction, positioning it as a promising avenue for advancing smart manufacturing systems aimed 
at increasing efficiency without compromising safety or ergonomic considerations. Nevertheless, 
challenges persist regarding long-term adaptability, primarily due to factors such as sensor reliability, 
environmental variability, and the inherent unpredictability of human behaviour. The reliance on 
high-quality multimodal inputs and assumptions of rational human decision-making may constrain 
performance under dynamic real-world conditions. Additionally, scalability to larger and more 
intricate industrial settings necessitates optimisation to preserve real-time responsiveness. 
Addressing these constraints through enhanced robustness, adaptive learning mechanisms, and more 
efficient algorithms will be essential for effective deployment of this framework across diverse 
manufacturing environments.  
 
7. Conclusion 

Amid the increasing significance of adaptable and intelligent human–robot collaboration within 
contemporary industrial assembly settings, this study presents a notable advancement by proposing 
a novel framework that integrates multimodal perception with game-theoretic optimisation. The 
necessity for dynamic task allocation is underscored by the observed variability in performance 
efficiency between humans and robots across diverse tasks. The proposed system leverages data 
derived from visual, auditory, and tactile sensors to enable cobots to more precisely interpret 
complex human behaviours and environmental signals. Real-time, utility-based decisions are 
generated by conceptualising human–robot interaction as a dynamic strategic game, wherein 
decisions are optimised to allocate tasks, resolve conflicts, and adapt to fluctuating operational 
contexts. Validation in both simulated environments and real-world industrial applications 
substantiates the framework’s benefits in terms of efficiency, safety, and operational flexibility. This 
research thus advances smart manufacturing by advocating a perception-driven strategy for seamless 
and strategic cobot integration within industrial workflows, characterised by robustness and 
adaptability.  

Notwithstanding these encouraging outcomes, the framework presents certain limitations. The 
system’s learning and adaptation processes are heavily contingent upon sensor fidelity and 
environmental factors; suboptimal lighting, excessive noise, or mechanical disturbances can 
adversely affect perceptual accuracy. Additionally, while the game-theoretic model demonstrates 
efficacy in short-term interactions, its performance may diminish in extended planning horizons or 
scenarios involving evolving objectives unless periodically updated. These constraints limit the 
framework’s applicability in uncontrolled or highly variable real-world contexts. Future investigations 
will prioritise enhancing long-term adaptability through the integration of reinforcement learning 
within the decision engine, thereby enabling cobots to refine their capabilities via prolonged 
interaction histories. Further developments aim to augment perceptual capacities through advanced 
tactile sensing and enhanced semantic vision. Incorporating user feedback mechanisms and 
modelling operator intent via physiological measures (such as electromyography or gaze tracking) 
could further bolster system responsiveness and operator trust. Ultimately, extending the framework 
to facilitate multi-agent coordination among multiple cobots and human operators represents a 
critical progression towards achieving scalable collaborative assembly in Industry 5.0 manufacturing 
environments.  
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